Scarcity of resources, climate change

Let's turn to the sea for our future

Scientific and technical challenges of the SEATURNS wave energy converter

SEATURNS

Gabriel CANTEINS Project Manager

20/06/2019 (HyWEC 2)

Scientific and technical challenges of the SEATURNS wave energy converter SEATURNS's solution Video presentation

Scientific and technical challenges of the SEATURNS wave energy converter SEATURNS's solution Innovative anchoring system – The yoyo principle

A patented solution (No. FR 3 073 013, "Dispositif houlomoteur flottant")

Scientific and technical challenges of the SEATURNS wave energy converter SEATURNS's solution

Energy conversion – The oscillating water pendulum principle

Scientific and technical challenges of the SEATURNS wave energy converter SEATURNS's solution

Simplicity – Two steel concentric cylinders with caps, sea water and a turbine

Scientific and technical challenges of the SEATURNS wave energy converter SEATURNS's solution Simplicity, sturdiness, performance

A simple and robust system designed to withstand hostile conditions and reduce maintenance costs.

A turbine with multiple applications

Dimensions: Ø 6 m x L 9 m Net weight: 22 tonnes

Scientific and technical challenges of the SEATURNS wave energy converter Technical framework Needs in studies

Key parameters:

- Outer diameter
- Inner diameter
- Ballast weight
- Water pendulum volume
- Turbine diameter
- Type of propeller

- Two-way air turbine (or other solutions)
- Internal aerodynamics
- Two-phase fluid mechanics (inside)
- Structure fluid (water) interaction (inside)
- Swell float interaction (oustide)
- Float and mooring lines behaviour

Scientific and technical challenges of the SEATURNS wave energy converter Concept assessment (INNOSEA & École Centrale Nantes, 2017) Preliminary assessment

Main conclusions:

- Demonstration of the viability of the concept and how it works
- Highlighted advantages: innovative anchoring and energy capture optimised for a wide spectrum of swell wavelength
- A preliminary evaluation of energy production is given, based on published performance of the most similar concept of WEC, the "desalination duck" (Edimbourg university)

Scientific and technical challenges of the SEATURNS wave energy converter Concept assessment (INNOSEA & École Centrale Nantes, 2017) Tank tests

Main conclusions:

- Demonstration of the system's ability to absorb a significant part of the swell's incident energy and convert it into pneumatic power
- Energy capture assured for a wide spectrum of swell wavelength, including the longest swells, even with a small system

Scientific and technical challenges of the SEATURNS wave energy converter Analytical study (INNOSEA 2018) Model

Parameters

Forces acting on the system

SEATURNS

Main hypothesis:

- 2D resolution, side effects considered in the calculation of hydrodynamic efforts
- Internal water pendulum = rigid volume
- Air pressure calculated with ideal gas laws
- 1st order linearisation of dynamics equations to fit to the linear theory of swell structure interaction

Scientific and technical challenges of the SEATURNS wave energy converter Analytical study (INNOSEA 2018) Solving

System of equations: $\{-\omega^2(\mathbb{M} + \mathbb{M}_A) - i\omega(\mathbb{B} + \mathbb{B}_H) + (\mathbb{K} + \mathbb{K}_H)\}\vec{A}e^{i\omega t} = \vec{F}_e$

 \mathbb{M} , \mathbb{B} , \mathbb{K} : mass, damping and stiffness matrices

 \mathbb{M}_A , \mathbb{B}_H , \mathbb{K}_H : added mass, hydrodynamic damping and hydrostatic stiffness matrices $\overrightarrow{F_e}$: external forces

$$\vec{A}e^{i\omega t} = [z, \theta, \alpha, p_1, p_2, F_{mx}]^T$$
: degrees of freedom (harmonic form)

Hydrodynamic loads computed with InWave (INNOSEA and École Centrale de Nantes)

Scientific and technical challenges of the SEATURNS wave energy converter Analytical study (INNOSEA, 2018) Results and perspetives

Main results:

- Feasibility of an analytical model
- Results similar to thoses of tank tests (École Centrale de Nantes, 2017)
- Parametric study conducted to specify the float dimensions
- Performance optimisation with variation of the water pendulum volume

Perspectives:

- Take into acount viscous losses and turbulence
- Integrate the swell's 2nd order termes
- Use a more precise turbine model

Scientific and technical challenges of the SEATURNS wave energy converter Needs Further studies

Further studies are needed to:

- Optimize the dimensions of the system to increase performance at all wavelengths.
 This includes a study of the factors influencing the different natural frequencies of the system.
- Study the anchoring concept of the machine, in particular its stability in directional waves and its resistance in extreme conditions.
- Define the characteristics of a potential pneumatic turbine and check that it is available.

