

Far-field maximal power absorption of a bulging cylindrical wave energy converter

Matthieu Ancellin

University College Dublin and MaREI Centre, Ireland (Present address: ENS Paris-Saclay, France)

with

A. Babarit (ECN), Ph. Jean (SBM Offshore) and F. Dias (UCD)

HyWEC 2, 18th June 2019

Context

A. Babarit, J. Singh, et al. "A numerical model for analysing the hydroelastic response of a flexible Electro Active Wave Energy Converter". In: *Journal of Fluid and Structures* 74 (2017), pp. 356–384

 Goal: open lightweight tool for the hydrodynamical design of WEC with non-trivial degrees of freedom.

Summary

Theory of far-field maximal absorption width

Implementation

Applications Floating buoy Bulging cylindrical WEC

Conclusion and perspectives

Strategy

- Linear potential flow in frequency domain.
- Energy balance:

$$\mathsf{captured} = \oint \mathsf{incoming} \mathsf{ and} \mathsf{ leaving} \mathsf{ waves}$$

For a given geometry, find the motion giving the best captured width.

Scheme adapted from (Babarit and Delhommeau 2015)

Preliminary definitions

Kochin function H

$$\Phi(R,\theta,z) = 4\pi \sqrt{\frac{1}{\lambda R}} H(\theta) f_0(z) e^{i\left(2\pi \frac{R}{\lambda} + \frac{\pi}{4}\right)} + O\left(\frac{1}{R^{\frac{3}{2}}}\right)$$

Complex-valued amplitudes of motions \hat{a}_j

Linear potential flow \Rightarrow linear combination of dofs $H = \sum_{j=1}^{n} \hat{a}_{j} H_{j}$

Absorption width

For a given motion $\hat{a} = (\hat{a}_j)_{j \in \{1,...,n\}}$:

$$\frac{W(\hat{a})}{8\pi k} = \Im\left(\sum_{j=1}^n \hat{a}_j H_j^*(\pi+\beta)\right) - k^2 \int_0^{2\pi} \left|\sum_{j=1}^n \hat{a}_j H_j(\theta)\right|^2 d\theta$$

Maximal absorption width

 $W^{\mathsf{optimal}} = \max_{\hat{a} \in \mathbb{C}^n} \left[W(\hat{a}) \right]$

Constraints on motion

Actually, \hat{a}^{optimal} might be unphysical.

Maximal absorption width under constraint

$$W^{\mathsf{optimal}} = \max_{\hat{a} \in \{\mathsf{adimissible motions}\}} [W(\hat{a})]$$

Example of constraints for a single degree of freedom:

 $|\hat{x}| = \max(|x(t)|)_{t \in [0,T]} < cst.$

Some previous works

- J.N. Newman. "Absorption of wave energy by elongated bodies". In: Applied Ocean Research 1.4 (1979), pp. 189–196
- ► FJM. Farley. "Wave energy conversion by flexible resonant rafts". In: Applied Ocean Research 4.1 (1982), pp. 57–63
- FJM. Farley. "Far-field theory of wave power capture by oscillating systems". In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370 (2012), pp. 278–287
- J. Falnes and A. Kurniawan. "Fundamental formulae for wave-energy conversion". In: Royal Society open science 2.3 (2015), p. 140305
- A. Babarit. L'énergie des vagues: Ressource, technologies et performance. ISTE éditions, 2018
 MaREI

Structure of the code

Capytaine: a Python-based distribution of Nemoh

- ► Full rewrite of Nemoh in Fortran 90 + Python.
- Improving user interface, documentation and testing.
- Integration with Python ecosystem (here Scipy optimization algorithm).
- Experimental optimizations.

Openly available under GPL license:

- conda install -c conda-forge capytaine
- Documentation: https://ancell.in/capytaine/
- Source code: https://github.com/mancellin/capytaine/

Application to a floating buoy

Wave direction = 0 rad

Dotted line: unlimited motion.

Wave direction = 0 rad

Wave direction = 0 rad

Wave direction = 0 rad

Wave direction = 0 rad

Wavelengh = 5 m

Dotted line: unlimited motion.

Wavelengh = 5 m

Dotted line: unlimited motion.

Dotted line: unlimited motion.

Small scale model of bulging WEC:

$$\sin(1 \times 2\pi x/L)$$

Small scale model of bulging WEC:

$$\sin(1 \times 2\pi x/L)$$

Small scale model of bulging WEC:

Small scale model of bulging WEC:

Small scale model of bulging WEC:

Wave direction = 0 rad

Wavelength = $0.5 \times$ cylinder length

Wavelength = $0.5 \times$ cylinder length

Wavelength = $0.5 \times$ cylinder length

Wavelength = $0.5 \times$ cylinder length

Perspectives

Continuing work at UCD:

- Comparison with equations of motion from (Babarit et al., 2017).
- Use of the actual modes of deformation of the S3 and parametric studies;

To-do:

- More physical constraints, including incoming wave height;
- Dedicated optimization algorithm?
- Analytical resolution of the optimization problem?

Conclusion

Proof-of-concept of a lightweight model for WECs design:

- Based on far-field radiated waves;
- Purely hydrodynamical;
- Few inputs: the geometry, the active dofs and their maximal amplitude;
- Including any non-trivial dofs.

Thank you for your attention!

Matthieu Ancellin matthieu.ancellin@ucd.ie https://ancell.in

