Wave-structure impact and rebound
at the capillary scale
and Faraday pilot waves

Paul Milewski
University of Bath

Collaborators: Carlos Galeano-Rios, Matt Durey, |. Bush, A. Nachbin, J.-M.Vanden-Broeck

THE

ROYAL
SOCIETY




Yves Couder



equency
ey § frequency

Figure 3.1: Faraday wave patterns observed in experiments with sinusoidal forcing.
(a) Stripe pattern from [9]. (b) Square pattern from [63]. (c) Hexagonal pattern from

[48]. (d) Target pattern from [9]. (e) Spiral pattern from [9]. (f) Region of coexisting
squares and hexagons from [48].







Bouncing droplet on a Faraday stable vibrating bath




Walking droplet on vibrating bath: the Faraday Pilot Wave
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Figure 1 | Principle of the experiment and actual set-up. (a) Sketch of the
successive eigenstates of increasing energy and decreasing wavelengths of
a quantum particle in a one-dimensional harmonic potential well. (b) These




The Fluid Mechanics Problem




Problem formulation
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The full problem

The incompressible Navier Stokes
1
ut—i—u°Vu:—;Vp+1/Au+F(t), V.-u=0,

F=—g(t)e, = —g(1 — I cos(wot))e,
e 0B and 0D are defined by the equations b(x,t) =0 and d(x,t) =0

[pn— pv 7-n] = okn, u] =0, D:b = D.;d = 0.

e [-] denotes the jump of the quantity across the interface,

e D; is the material derivative 0; +u - V,

e o the surface tension coefficient, x is the mean curvature of the surface
e v is the viscosity, p is the density (with different values in each domain).
e n is the unit normal and 7 is the strain tensor (Vu + Vu').
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Modelling and computation of droplet - Faraday pilot wave interaction.
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Case a) Vp = 34.5863 cm/s Case f) Vp = 61.0775 cm /s

Case k) Vo = 92.2089 cm/s Case p) Vo = 114.0690 cm/s



Joint work with Radu Cimpeanu.



Problem formulation
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Challenges

» Multiscale problem: length scales ~ 107°m. to ~ 107t m.:
timescales ~ 107 2%s. to ~ 10%s.

» Free boundary problem: bath surface and droplet deform.

» Modelling is necessary: both for feasibility and to extract the important
effects.

» Removing the lubrication layer results in a “nonsmooth” (piecewise
smooth) dynamical system.
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Modelling and computation of droplet - Faraday pilot wave interaction.



Problem formulation
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Modelling Approaches

» Discrete Waves: Eddi, Couder, Bush & others: Wavefield as a sum of
discrete single Bessel (or simpler) standing waves with time decay.

» Trajectory Equation: Rosales, Oza & Bush: Discrete sum approximated by
an integral, makes analysis possible.

» Wave Generation: M. et. al.: Continuous-time bath-droplet interaction -
droplet as a wavemaker - captures further important effects (e.g. Doppler,
(m,n) modes, decay).

» Discrete Wave Generation: Durey & M.: Discrete-time bath-droplet
interaction - allows for fast realistic simulations and analysis.
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Modelling and computation of droplet - Faraday pilot wave interaction.



Discrete Impact Model
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Simplifying assumptions

Assume:
» Period doubled vertical dynamics (i.e. (2,1) mode).
> Instantaneous impacts: f(t) = o 0(t — t).
» Impacts occur at a point: P(x,t) = f(t)d(x — X(t)).

> The result: fo = gT, where T = 4m/wyg is the time between impacts.

Fourier-Hankel transform introduces orthogonal basis functions:

Dp(r,0; k) = Jm(kr) cos(mb),
V., (r,0; k) = Jn(kr)sin(m8f),

for all k € R" and for all m € N.
Obtain system of homogeneous ODEs with jump conditions.
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Discrete Impact
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Dynamics and jump conditions

n(r,0,t) = i /OOO k(am(t; KYPn(r,0; k) + bm(t; K)Wn(r,0; k)) dk.

During flight:
Lkam(t; k) = O, ﬁkbm(t; k) = 0.

L is a damped Mathieu differential operator.
X" (t) + V' [X(t)] = 0.
At impacts:

[ (tn; KL = —Pum(K)®m (X(tn); k),
[67n(tn; k)= = —Pm(k)Wm (X(tn); k).

[X'(t)]Z = —F(c) (%\/gvn(X(tn), tn) + X’(t,,))
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Discrete Impact
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Regular walking states - orbits, walkers, pairs, trains

Walking states are found under a periodicity under shift condition.

Period Map = Mathieu Map o Graf Addition Map o Jump Conditions Map

@ Find discrete-time travelling solutions with speed 0x.

@ Linearise map to analyse stability of steady states.

@ Lower wave field energy for walking than unstable bouncing.
@ Wave field has exponential spatial decay and Doppler shift.
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Figure: Left: full solution (black) with analytical approximation (grey)
valid for x < 1. Right: Wave field for 6x = 0.08 and /T = 0.96.



Discrete Impact
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Two orbiting droplets - quantization

» [n-phase and out of phase orbiters obtained exactly. Map composition also
gives stability.
» Obtain stable,
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, strongly unstable solutions.
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Modelling and computation of droplet - Faraday pilot wave interaction.



Exotic orbits

e Circular orbits destabilize to more exotic orbits (lemniscate,
trefoil, butterfly).

o Experimentally observed double quantization in R and L,
(Perrard et al 2014).
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Statistical analysis of chaotic trajectories

Simulate long trajectory starting from (unstable) circular orbit.
Segment trajectory at points of maximum radius and compute
mean radius R and angular momentum L, over each sub-trajectory.
Compute cluster centroids using K-means clustering.

~~Double Quantization in R and L,!
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o Effective potential = mean wave field + harmonic potential.

@ Gradient of effective potential corresponds to directions of
mesh.

Effective Potential
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Theorem 1. The stationary probability distribution p(x) for the droplet position and the mean
wave field at impact (x) are related by

@)= | nu(e ~ i) dy = (s + ) @), ©)

where ng(x) is the radially symmetric wave field of a bouncer centred at the origin.!




Continuous-time wave generation and




Continuous time wave generation
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Modelling the impact

Consider the droplet to be centred at (X(t), Z(t)), and a free surface n(x, t).

mZ = —mg(t)+ {—afZ} le(t) + F (Z, Z,n,nt> li(t),
mX = {—an} I (1) + {_a,x _ Vﬁ|x:x} F Ii(t),

e /r and /i are indicator functions of flight and impact
o F (Z, Z. n, ﬁt) is the force normal to the free surface exerted on the droplet.

e m is the droplet mass, ar and «; are flight and impact drag coefficients
e Replacing n by 17 in F, an average representation of the bath’s free surface
(notion of a “penetration depth” h(t) =|Z — R — 7|)
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Modelling and computation of droplet - Faraday pilot wave interaction.



Continuous time wave generation
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Modelling - the waves

Linearised quasi-potential approximation for weakly damped waves

Ap = 0, z <0,
1
b = —g(t)n+ %Alm F2whud = Po(x = X(e),t),  z=0,
e = ¢+ 20AHN, z =0,
Pp = F(t)l(|x — X| < R(t))/mR(t)*

> ¢ is the potential in a Helmholtz decomposition u = V¢ + V x W(g).
» R(t) is a contact radius - modelled geometrically R(Z — 7).
» Ay is the horizontal Laplacian.
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Modelling and computation of droplet - Faraday pilot wave interaction.



Continuous time wave generation
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Modelling the impact (cont)

> [i(t) must be calculated from geometric information on the waves and
flight of drop.

» The dynamical system is now non-smooth: there is a switch between
impact and flight.

One possible vertical dynamics (ie a model for F) (see Molacek and Bush

2014) is: )
mZ = —mg(t).
1+ — S | mZ 4 S T2 (22 )+ (7 - ) = —mg(t),
In2 | &R 3 In | 2fo In | &
Z—m Z—n Z—n

during flight and impact respectively.
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Continuous time wave generation
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Complex bouncing and walking .. - (1) , (2.2)
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(m, n)P states: m is number of forcing periods, n is number of bounces, p is an
energy state. The control parameter is I'.
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Continuous time wave generation
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Experimental Verification
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The model has good comparison with experiments over a range of dynamics.
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Kinematic Match Model




Kinematic match model
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Macroscopic system of wave-particle association with
complex phenomena.

System mimics qualitatively many quantum phenomena.
“Virtual laboratory” and mathematical models to explore the
behaviour.

System is nonlinear,; chaotic, and particle has path induced
memory.

Other applications for kinematic match

Drop deformation

Hydrodynamics of Faraday pilot-waves in cavities.
Which equation describes the probability?
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