

Bouncing and floating on a free surface: The kinematic match

Carlos Galeano-Rios

HyWEC 2

June 20th, 2019
Collaborators: Paul Milewski (University of Bath) Jean-Marc Vanden-Broeck (UCL)

EPSRC

Engineering and Physical Sciences
Research Council

Experiments by Daniel Harris, Brown University

Experiments by Daniel Harris, Brown University

$$
t=t_{0}+\delta t
$$

$$
t=t_{0}+\delta t
$$

Falling Sphere = Moving Ceiling

Falling Sphere = Moving Ceiling

Perfectly Hydrophobic Rigid Sphere

Falling Sphere = Moving Ceiling

Perfectly Hydrophobic Rigid Sphere

in the contact area

Falling Sphere = Moving Ceiling

Perfectly Hydrophobic Rigid Sphere

in the contact area

Falling Sphere = Moving Ceiling

Perfectly Hydrophobic Rigid Sphere

in the contact area

$$
h(t)+z(x, y)=\eta(x, y, t)
$$

Falling Sphere = Moving Ceiling

Perfectly Hydrophobic Rigid Sphere
in the contact area $\longrightarrow h(t)+z(x, y)=\eta(x, y, t)$

$$
h_{t t}=-\frac{1}{F r}-D h_{t}+\frac{1}{M} \int_{r \leqslant r_{c}} p_{s} \mathrm{~d} A,
$$

Falling Sphere = Moving Ceiling

Perfectly Hydrophobic Rigid Sphere

0 fitting parameters

in the contact area $\longrightarrow h(t)+z(x, y)=\eta(x, y, t)$

$$
h_{t t}=-\frac{1}{F r}-D h_{t}+\frac{1}{M} \int_{r \leqslant r_{c}} p_{s} \mathrm{~d} A,
$$

Falling Sphere = Moving Ceiling

Perfectly Hydrophobic Rigid Sphere
in the contact area $\longrightarrow h(t)+z(x, y)=\eta(x, y, t)$

$$
h_{t t}=-\frac{1}{F r}-D h_{t}+\frac{1}{M} \int_{r \leqslant r_{c}} p_{s} \mathrm{~d} A,
$$

A Non-local Formulation in Physical Space

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

$\phi=$ Velocity Potential

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

$\phi=$ Velocity Potential
$\eta=$ Free Surface Elevation

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

$\phi=$ Velocity Potential
$\eta=$ Free Surface Elevation
$p_{s}=$ Pressure on Free Surface

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

$\phi=$ Velocity Potential
$\eta=$ Free Surface Elevation
$p_{s}=$ Pressure on Free Surface

$$
\Delta_{H}=\partial_{x x}+\partial_{y y}
$$

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

$\phi=$ Velocity Potential

$\eta=$ Free Surface Elevation

$$
p_{s}=\text { Pressure on Free Surface }
$$

$$
\Delta_{H}=\partial_{x x}+\partial_{y y}
$$

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

$\phi=$ Velocity Potential
$\eta=$ Free Surface Elevation $p_{s}=$ Pressure on Free Surface

$$
\Delta_{H}=\partial_{x x}+\partial_{y y}
$$

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

$\phi=$ Velocity Potential
$\eta=$ Free Surface Elevation
$p_{s}=$ Pressure on Free Surface

$$
\Delta_{H}=\partial_{x x}+\partial_{y y}
$$

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

$\phi=$ Velocity Potential
$\eta=$ Free Surface Elevation
$p_{s}=$ Pressure on Free Surface
$\Delta_{H}=\partial_{x x}+\partial_{y y}$
$\kappa=$ Curvature

$$
R e=V_{0} R_{o} / \nu
$$

$$
F r=V_{0}^{2} /(g R o)
$$

$$
W e=\rho V_{0}^{2} R_{o} / \sigma
$$

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s},, & & z=0 ;
\end{aligned}
$$

subject to

$$
\begin{array}{lll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$\phi=$ Velocity Potential
$\eta=$ Free Surface Elevation
$p_{s}=$ Pressure on Free Surface
$\Delta_{H}=\partial_{x x}+\partial_{y y}$
$\kappa=$ Curvature

$$
\begin{aligned}
R e & =V_{0} R_{o} / \nu \\
F r & =V_{0}^{2} /(g R o) \\
W e & =\rho V_{0}^{2} R_{o} / \sigma
\end{aligned}
$$

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z} & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

subject to

$$
\begin{array}{lll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$\phi=$ Velocity Potential
$\eta=$ Free Surface Elevation
$p_{s}=$ Pressure on Free Surface
$\Delta_{H}=\partial_{x x}+\partial_{y y}$
$\kappa=$ Curvature

$$
\begin{aligned}
R e & =V_{0} R_{o} / \nu \\
F r & =V_{0}^{2} /(g R o) \\
W e & =\rho V_{0}^{2} R_{o} / \sigma
\end{aligned}
$$

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\Delta \phi & =0, & & z \leqslant 0, \\
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z} & & z=0, \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & & z=0 ;
\end{aligned}
$$

subject to

$$
\begin{array}{lll}
\text { ect to } & \eta \rightarrow 0 & \text { when } \\
& \phi, \nabla \phi \rightarrow 0 & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array} \phi_{z}(\mathbf{r})=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2} \backslash B(\mathbf{r} ; \epsilon)} \frac{\phi(\mathbf{r})-\phi(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d A(\mathbf{s}) .
$$

$\phi=$ Velocity Potential

$$
\kappa=\text { Curvature }
$$

$\eta=$ Free Surface Elevation
$p_{s}=$ Pressure on Free Surface

$$
R e=V_{0} R_{o} / \nu
$$

$$
F r=V_{0}^{2} /(g R o)
$$

$$
\Delta_{H}=\partial_{x x}+\partial_{y y}
$$

$$
W e=\rho V_{0}^{2} R_{o} / \sigma
$$

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z=0 \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & z=0
\end{aligned}
$$

subject to

$$
\begin{array}{cccc}
\text { ect to } & \eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
& \phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}}
\end{array} \rightarrow \infty .
$$

$\phi=$ Velocity Potential
$\eta=$ Free Surface Elevation
$p_{s}=$ Pressure on Free Surface
$\Delta_{H}=\partial_{x x}+\partial_{y y}$
$\kappa=$ Curvature

$$
\begin{aligned}
R e & =V_{0} R_{o} / \nu \\
F r & =V_{0}^{2} /(g R o) \\
W e & =\rho V_{0}^{2} R_{o} / \sigma
\end{aligned}
$$

A Non-local Formulation in Physical Space

$$
\begin{aligned}
\eta_{t} & =\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z & =0 \\
\phi_{t} & =-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & z & =0
\end{aligned}
$$

$$
\begin{array}{cccc}
\text { ect to } & \eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
& \phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}}
\end{array} \rightarrow \infty .
$$

A Non-local Formulation in Physical Space

$$
\begin{array}{ll}
\eta_{t}=\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z=0, \\
\phi_{t}=-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & z=0 ;
\end{array}
$$

subject to

$$
\begin{array}{cll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$$
\phi_{z}(\mathbf{r})=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2} \backslash B(\mathbf{r} ; \epsilon)} \frac{\phi(\mathbf{r})-\phi(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d A(\mathbf{s})
$$

A Non-local Formulation in Physical Space

$$
\begin{array}{ll}
\eta_{t}=\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z=0, \\
\phi_{t}=-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & z=0 ;
\end{array}
$$

subject to

$$
\begin{array}{cll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$$
\phi_{z}(\mathbf{r})=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2} \backslash B(\mathbf{r} ; \epsilon)} \frac{\phi(\mathbf{r})-\phi(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d A(\mathbf{s})
$$

$$
h_{t t}=-\frac{1}{F r} h-D h_{t}+\frac{1}{M} \int_{r \leq r_{c}} p_{s} d A
$$

A Non-local Formulation in Physical Space

$$
\begin{array}{ll}
\eta_{t}=\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z=0, \\
\phi_{t}=-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & z=0 ;
\end{array}
$$

subject to

$$
\begin{array}{lll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$$
\phi_{z}(\mathbf{r})=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2} \backslash B(\mathbf{r} ; \epsilon)} \frac{\phi(\mathbf{r})-\phi(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d A(\mathbf{s})
$$

$$
\begin{aligned}
h_{t t} & =-\frac{1}{F r} h-D h_{t}+\frac{1}{M} \int_{r \leq r_{c}} p_{s} d A \\
\eta & =h+z_{s}, \quad \text { where } \quad r \leq r_{c}
\end{aligned}
$$

A Non-local Formulation in Physical Space

$$
\begin{array}{ll}
\eta_{t}=\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z=0, \\
\phi_{t}=-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & z=0 ;
\end{array}
$$

subject to

$$
\begin{array}{lll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$$
\phi_{z}(\mathbf{r})=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2} \backslash B(\mathbf{r} ; \epsilon)} \frac{\phi(\mathbf{r})-\phi(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d A(\mathbf{s})
$$

$$
\begin{aligned}
h_{t t} & =-\frac{1}{F r} h-D h_{t}+\frac{1}{M} \int_{r \leq r_{c}} p_{s} d A \\
\eta & =h+z_{s}, \quad \text { where } \quad r \leq r_{c} ; \\
\eta & <h+z_{s}, \quad \text { where } \quad r_{c}<r<R_{o} ;
\end{aligned}
$$

A Non-local Formulation in Physical Space

$$
\begin{array}{ll}
\eta_{t}=\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z=0, \\
\phi_{t}=-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & z=0 ;
\end{array}
$$

subject to

$$
\begin{array}{lll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$$
\phi_{z}(\mathbf{r})=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2} \backslash B(\mathbf{r} ; \epsilon)} \frac{\phi(\mathbf{r})-\phi(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d A(\mathbf{s})
$$

$$
\begin{array}{rlrl}
h_{t t} & =-\frac{1}{F r} h-D h_{t}+\frac{1}{M} \int_{r \leq r_{c}} p_{s} d A \\
\eta & =h+z_{s}, & & \text { where } r \leq r_{c} ; \\
\eta & <h+z_{s}, & \text { where } \quad r_{c}<r<R_{o} ; \\
p_{s} & =0, & & \text { where } r>r_{c} ;
\end{array}
$$

A Non-local Formulation in Physical Space

$$
\begin{array}{ll}
\eta_{t}=\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z=0, \\
\phi_{t}=-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s}, & z=0 ;
\end{array}
$$

subject to

$$
\begin{array}{lll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$$
\phi_{z}(\mathbf{r})=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2} \backslash B(\mathbf{r} ; \epsilon)} \frac{\phi(\mathbf{r})-\phi(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d A(\mathbf{s})
$$

A Non-local Formulation in Physical Space

$$
\begin{array}{ll}
\eta_{t}=\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z=0, \\
\phi_{t}=-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-P_{s} & z=0 ;
\end{array}
$$

subject to

$$
\begin{array}{lll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$$
\phi_{z}(\mathbf{r})=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2} \backslash B(\mathbf{r} ; \epsilon)} \frac{\phi(\mathbf{r})-\phi(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d A(\mathbf{s})
$$

(

A Non-local Formulation in Physical Space

$$
\begin{array}{ll}
\eta_{t}=\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z=0, \\
\phi_{t}=-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-P_{s} & z=0 ;
\end{array}
$$

subject to

$$
\begin{array}{cll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$$
\phi_{z}(\mathbf{r})=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2} \backslash B(\mathbf{r} ; \epsilon)} \frac{\phi(\mathbf{r})-\phi(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d A(\mathbf{s})
$$

$$
\begin{aligned}
& h_{t t}=-\frac{1}{F r} h-D h_{t} \\
& \eta=h+z_{s}, \\
& \eta=h+z_{s}, \quad w \\
& p_{s}=0, \\
& \partial_{r} \eta\left(r_{c}\right)=\partial_{r} z_{s}\left(r_{c}\right) .
\end{aligned}
$$

A Non-local Formulation in Physical Space

$$
\begin{array}{ll}
\eta_{t}=\frac{2}{R e} \Delta_{H} \eta+\phi_{z}, & z=0, \\
\phi_{t}=-\frac{1}{F r} \eta+\frac{1}{W e} \kappa[\eta]+\frac{2}{R e} \Delta_{H} \phi-p_{s} & z=0 ;
\end{array}
$$

subject to

$$
\begin{array}{cll}
\eta \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}} \rightarrow \infty \\
\phi, \nabla \phi \rightarrow 0 & \text { when } & \sqrt{x^{2}+y^{2}+z^{2}} \rightarrow \infty .
\end{array}
$$

$$
\phi_{z}(\mathbf{r})=\frac{1}{2 \pi} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2} \backslash B(\mathbf{r} ; \epsilon)} \frac{\phi(\mathbf{r})-\phi(\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^{3}} d A(\mathbf{s})
$$

$$
\begin{aligned}
& \left.h_{t t}=-\frac{1}{F r} h-D h_{t}+\frac{1}{M} \int_{r \leq r} P_{s}\right)^{A} \\
& \eta=h+z_{s}, \quad \text { where } r \leq r_{c} ;
\end{aligned}
$$

$\eta<h+z_{s}$, where $r_{c}<r<R_{o}$;

$$
p_{s}=0, \quad \text { where } \quad r>r_{c} ;
$$

$$
\partial_{r} \eta\left(r_{c}\right)=\partial_{r} z_{s}\left(r_{c}\right) .
$$

Numerical Implementation

$$
Q W^{j+1}=F^{j},
$$

Numerical Implementation

$Q W^{j+1}=F^{j}$,

$$
\boldsymbol{Q}=\left[\begin{array}{ccccc}
\left(\boldsymbol{I}-\frac{2 \delta t}{R e} \Delta_{H}\right) & -\delta t N & 0 & 0 & 0 \\
\delta t\left(\frac{1}{F r} \boldsymbol{I}-\frac{1}{W e} \Delta_{H}\right) & \left(I-\frac{2 \delta t}{R e} \Delta_{H}\right) & \delta t \boldsymbol{I} & 0 & 0 \\
0 & 0 & -\delta t \frac{A}{M} & (1+\delta t D) & 0 \tag{0}\\
0 & 0 & 0 & -\delta t & 1
\end{array}\right]
$$

Numerical Implementation

$Q W^{j+1}=F^{j}$,

$$
\begin{gathered}
\boldsymbol{Q}=\left[\begin{array}{ccccc}
\left(I-\frac{2 \delta t}{R e} \Delta_{H}\right) & -\delta t N & 0 & 0 & 0 \\
\delta t\left(\frac{1}{F r} I-\frac{1}{W e} \Delta_{H}\right) & \left(I-\frac{2 \delta t}{R e} \Delta_{H}\right) & \delta t l & 0 & 0 \\
0 & 0 & -\delta t \frac{A}{M} & (1+\delta t D) & 0 \\
0 & 0 & 0 & -\delta t & 1
\end{array}\right], \\
W^{j+1}=\left[\begin{array}{lllll}
\eta^{j+1} & \phi^{j+1} & p_{s}^{j+1} & h_{t}^{j+1} & h^{j+1}
\end{array}\right]^{\mathrm{T}},
\end{gathered}
$$

Numerical Implementation

$Q W^{j+1}=F^{j}$,

$$
\left.\begin{array}{c}
\boldsymbol{Q}=\left[\begin{array}{cccc}
\left(\boldsymbol{I}-\frac{2 \delta t}{R e} \Delta_{H}\right) & -\delta t N & 0 & 0 \\
\delta t\left(\frac{1}{F r} \boldsymbol{I}-\frac{1}{W e} \Delta_{H}\right) & \left(\boldsymbol{I}-\frac{2 \delta t}{R e} \Delta_{H}\right) & \delta t \boldsymbol{I} & 0 \\
0 & 0 & -\delta t \frac{A}{M} & (1+\delta t D) \\
0 & 0 & 0 & -\delta t
\end{array}\right. \\
W^{j+1}=\left[\begin{array}{llll}
\eta^{j+1} & \phi^{j+1} & p_{s}^{j+1} & h_{t}^{j+1} \\
h^{j+1}
\end{array}\right]^{\mathrm{T}}, \\
F^{j}=\left[\begin{array}{lll}
\eta^{j} & \left(\phi^{j}+\frac{1}{W e}\left(\kappa-\Delta_{H}\right) \eta^{j+1}\right) & \left(h_{t}^{j}-\delta t \frac{1}{F r}\right)
\end{array} h^{j}\right.
\end{array}\right]^{\mathrm{T}} .
$$

Numerical Implementation

$$
\boldsymbol{Q}_{k} W_{k}^{W_{k}^{j+1}}=F_{k}^{j},
$$

Numerical Implementation

$$
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j},
$$

$$
\boldsymbol{Q}_{k}=\left[\begin{array}{ccc}
\left(\boldsymbol{I}^{k^{\prime}}-\frac{2 \delta t}{R e} \Delta_{H}^{k^{\prime}}\right) & -\delta t N & 0 \tag{0}\\
\delta t\left(\frac{1}{F r} \boldsymbol{l}^{\mu^{\prime}}-\frac{1}{W e} \Delta_{H}^{k^{\prime}}\right) & \left(\boldsymbol{I}-\frac{2 \delta t}{R e} \Delta_{H}\right) & \delta \boldsymbol{\boldsymbol { l } ^ { k }}
\end{array}\right.
$$

$$
\left.\begin{array}{c}
a_{k} \\
b_{k}
\end{array}\right]
$$

$$
\left.\begin{array}{llccc}
0 & 0 & -\delta t \frac{A^{k}}{M} & (1+\delta t D) & 0 \\
0 & 0 & 0 & -\delta t & 1
\end{array}\right]
$$

Numerical Implementation

$$
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j},
$$

$$
\boldsymbol{Q}_{k}=\left[\begin{array}{ccccc}
\left(\boldsymbol{l}^{k^{\prime}}-\frac{2 \delta t}{R e} \Delta_{H}^{k^{\prime}}\right) & -\delta t N & 0 & 0 & a_{k} \\
\delta t\left(\frac{1}{F r} \boldsymbol{l}^{k^{\prime}}-\frac{1}{W e} \Delta_{H}^{k^{\prime}}\right) & \left(\boldsymbol{I}-\frac{2 \delta t}{R e} \Delta_{H}\right) & \delta t \boldsymbol{l}^{k} & 0 & b_{k} \tag{0}\\
0 & 0 & -\delta t \frac{A^{k}}{M} & (1+\delta t D) & 0 \\
0 & 0 & 0 & -\delta t & 1
\end{array}\right]
$$

$W^{j+1}=\left[\begin{array}{lllll}\eta^{j+1, k^{\prime}} & \phi^{j+1} & p_{s}^{j+1, k} & h_{t}^{j+1} & h^{j+1}\end{array}\right]^{\mathrm{T}}$,

Numerical Implementation

$$
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j},
$$

$$
\boldsymbol{Q}_{k}=\left[\begin{array}{ccccc}
\left(\boldsymbol{l}^{\prime}-\frac{2 \delta t}{R e} \Delta_{H}^{k^{\prime}}\right) & -\delta t N & 0 & 0 & a_{k} \\
\delta t\left(\frac{1}{F r} \boldsymbol{\mu}^{\prime}-\frac{1}{W e} \Delta_{H}^{k^{\prime}}\right) & \left(\boldsymbol{I}-\frac{2 \delta t}{R e} \Delta_{H}\right) & \delta \boldsymbol{\boldsymbol { l } ^ { k }} & 0 & b_{k} \\
0 & 0 & -\delta t \frac{A^{k}}{M} & (1+\delta t D) & 0 \\
0 & 0 & 0 & -\delta t & 1
\end{array}\right]
$$

$$
W^{j+1}=\left[\begin{array}{lllll}
\eta^{j+1, k^{\prime}} & \phi^{j+1} & p_{s}^{j+1, k} & h_{t}^{j+1} & h^{j+1}
\end{array}\right]^{\mathrm{T}},
$$

Superindex k

Numerical Implementation

$$
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j},
$$

$$
\boldsymbol{Q}_{k}=\left[\begin{array}{ccccc}
\left(\boldsymbol{l}^{k^{\prime}}-\frac{2 \delta t}{R e} \Delta_{H}^{k^{\prime}}\right) & -\delta t N & 0 & 0 & a_{k} \\
\delta t\left(\frac{1}{F r} \boldsymbol{l}^{k^{\prime}}-\frac{1}{W e} \Delta_{H}^{k^{\prime}}\right) & \left(\boldsymbol{I}-\frac{2 \delta t}{R e} \Delta_{H}\right) & \delta t \boldsymbol{l}^{k} & 0 & b_{k} \tag{0}\\
0 & 0 & -\delta t \frac{A^{k}}{M} & (1+\delta t D) & 0 \\
0 & 0 & 0 & -\delta t & 1
\end{array}\right]
$$

$$
W^{j+1}=\left[\begin{array}{lllll}
\eta^{j+1, k^{\prime}} & \phi^{j+1} & p_{s}^{j+1, k} & h_{t}^{j+1} & h^{j+1}
\end{array}\right]^{\mathrm{T}}
$$

Superindex $k \longmapsto$ we kept the first k columns

Numerical Implementation

$$
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j},
$$

$$
\boldsymbol{Q}_{k}=\left[\begin{array}{ccccc}
\left(\boldsymbol{l}^{k^{\prime}}-\frac{2 \delta t}{R e} \Delta_{H}^{k^{\prime}}\right) & -\delta t N & 0 & 0 & a_{k} \\
\delta t\left(\frac{1}{F r} \boldsymbol{l}^{k^{\prime}}-\frac{1}{W e} \Delta_{H}^{k^{\prime}}\right) & \left(\boldsymbol{I}-\frac{2 \delta t}{R e} \Delta_{H}\right) & \delta t \boldsymbol{I}^{k} & 0 & b_{k} \tag{0}\\
0 & 0 & -\delta t \frac{A^{k}}{M} & (1+\delta t D) & 0 \\
0 & 0 & 0 & -\delta t & 1
\end{array}\right]
$$

$$
W^{j+1}=\left[\begin{array}{lllll}
\eta^{j+1, k^{\prime}} & \phi^{j+1} & p_{s}^{j+1, k} & h_{t}^{j+1} & h^{j+1}
\end{array}\right]^{\mathrm{T}}
$$

Superindex $k \longmapsto$ we kept the first k columns Superindex k^{\prime}

Numerical Implementation

$$
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j},
$$

$$
\boldsymbol{Q}_{k}=\left[\begin{array}{ccccc}
\left(\boldsymbol{I}^{k^{\prime}}-\frac{2 \delta t}{R e} \Delta_{H}^{k^{\prime}}\right) & -\delta t N & 0 & 0 & a_{k} \\
\delta t\left(\frac{1}{F r} \boldsymbol{l}^{k^{\prime}}-\frac{1}{W e} \Delta_{H}^{k^{\prime}}\right) & \left(\boldsymbol{I}-\frac{2 \delta t}{R e} \Delta_{H}\right) & \delta t \boldsymbol{l}^{k} & 0 & b_{k} \\
0 & 0 & -\delta t \frac{A^{k}}{M} & (1+\delta t D) & 0 \\
0 & 0 & 0 & -\delta t & 1
\end{array}\right]
$$

$$
W^{j+1}=\left[\begin{array}{lllll}
\eta^{j+1, k^{\prime}} & \phi^{j+1} & p_{s}^{j+1, k} & h_{t}^{j+1} & h^{j+1}
\end{array}\right]^{\mathrm{T}}
$$

Superindex $k \longmapsto$ we kept the first k columns Superindex $k^{\prime} \longrightarrow$ we kept all but the first k columns

Numerical Implementation

$$
\boldsymbol{Q}_{k} W_{k}^{W_{k}^{j+1}}=F_{k}^{j},
$$

Numerical Implementation

$$
\begin{gathered}
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j}, \\
\left(\eta^{j}\right)^{\mathrm{T}}-\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)\left(z_{s}^{k}\right)^{\mathrm{T}} \\
\left(\phi^{j}\right)^{\mathrm{T}}-\delta t\left\{\frac{1}{F r} \boldsymbol{r}^{\boldsymbol{k}}\left(z_{s}^{k}\right)^{\mathrm{T}}-\frac{1}{W e}\left(\boldsymbol{I}^{k}\left(\left(\kappa z_{s}\right)^{k}\right)^{\mathrm{T}}+z_{s}((k-1) \delta r) c_{k}^{\mathrm{T}}\right)\right\} \\
h_{t}^{j}-\delta t \frac{1}{F r}
\end{gathered}
$$

Numerical Implementation

$$
\begin{gathered}
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j}, \\
F_{k}^{j}=\left[\begin{array}{c}
\left(\eta^{j}\right)^{\mathrm{T}}-\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)\left(z_{s}^{k}\right)^{\mathrm{T}} \\
\left(\phi^{j}-\delta t\left\{\frac{1}{F r} \boldsymbol{l}^{k}\left(z_{s}^{k}\right)^{\mathrm{T}}-\frac{1}{W e}\left(\boldsymbol{l}^{k}\left(\left(\left(\kappa z_{s}\right)^{k}\right)^{\mathrm{T}}+z_{s}((k-1) \delta r) c_{k}^{\mathrm{T}}\right)\right\}\right.\right. \\
h_{t}^{j}-\delta t \frac{1}{F r} \\
h^{j}
\end{array}\right. \\
a_{k}=\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)[1,1, \ldots, 1]^{\mathrm{T}},
\end{gathered}
$$

Numerical Implementation

$$
\begin{aligned}
& \boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j}, \\
& \begin{array}{c}
F_{k}^{j}=\left[\begin{array}{c}
\left(\eta^{j}\right)^{\mathrm{T}}-\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)\left(z_{s}^{k}\right)^{\mathrm{T}} \\
\left(\phi^{j}\right)^{\mathrm{T}}-\delta t\left\{\frac{1}{F r} \boldsymbol{l}^{k}\left(z_{s}^{k}\right)^{\mathrm{T}}-\frac{1}{W e}\left(\boldsymbol{l}^{k}\left(\left(\kappa z_{s}\right)^{k}\right)^{\mathrm{T}}+z_{s}((k-1) \delta r) c_{k}^{\mathrm{T}}\right)\right\} \\
h_{t}^{j}-\delta t \frac{1}{F r} \\
h^{j}
\end{array}\right. \\
a_{k}=\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)[1,1, \ldots, 1]^{\mathrm{T}}, \quad b_{k}=\delta t\left(\frac{1}{F r} \boldsymbol{l}^{k}[1,1, \ldots, 1]^{\mathrm{T}}-\frac{1}{W e} c_{k}^{\mathrm{T}}\right),
\end{array}
\end{aligned}
$$

Numerical Implementation

$$
\begin{gathered}
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j}, \\
F_{k}^{j}=\left[\begin{array}{c}
\left(\eta^{j}\right)^{\mathrm{T}}-\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)\left(z_{s}^{k}\right)^{\mathrm{T}} \\
\left(\phi^{j}\right)^{\mathrm{T}}-\delta t\left\{\frac{1}{F r} \boldsymbol{l}^{k}\left(z_{s}^{k}\right)^{\mathrm{T}}-\frac{1}{W e}\left(\boldsymbol{l}^{k}\left(\left(\kappa z_{s}\right)^{k}\right)^{\mathrm{T}}+z_{s}((k-1) \delta r) c_{k}^{\mathrm{T}}\right)\right\} \\
h_{t}^{j}-\delta t \frac{1}{F r} \\
h^{j}
\end{array}\right. \\
a_{k}=\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)[1,1, \ldots, 1]^{\mathrm{T}}, \quad b_{k}=\delta t\left(\frac{1}{F r} \boldsymbol{l}^{k}[1,1, \ldots, 1]^{\mathrm{T}}-\frac{1}{W e} c_{k}^{\mathrm{T}}\right), \\
c_{k}=\frac{2 k-1}{2 k(\delta r)^{2}} e_{k+1}
\end{gathered}
$$

Numerical Implementation

$$
\begin{gathered}
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j}, \\
F_{k}^{j}=\left[\begin{array}{c}
\left(\eta^{j}\right)^{\mathrm{T}}-\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)\left(z_{s}^{k}\right)^{\mathrm{T}} \\
\left(\phi^{j}\right)^{\mathrm{T}}-\delta t\left\{\frac{1}{F r} \boldsymbol{l}^{k}\left(z_{s}^{k}\right)^{\mathrm{T}}-\frac{1}{W e}\left(\boldsymbol{l}^{k}\left(\left(\kappa z_{s}\right)^{k}\right)^{\mathrm{T}}+z_{s}((k-1) \delta r) c_{k}^{\mathrm{T}}\right)\right\} \\
h_{t}^{j}-\delta t \frac{1}{F r} \\
h^{j}
\end{array}\right. \\
a_{k}=\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)[1,1, \ldots, 1]^{\mathrm{T}}, \quad b_{k}=\delta t\left(\frac{1}{F r} \boldsymbol{r}^{k}[1,1, \ldots, 1]^{\mathrm{T}}-\frac{1}{W e} c_{k}^{\mathrm{T}}\right), \\
c_{k}=\frac{2 k-1}{2 k(\delta r)^{2}} e_{k+1}
\end{gathered}
$$

Superindex k

Numerical Implementation

$$
\left.\begin{array}{c}
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j}, \\
F_{k}^{j}=\left[\begin{array}{c}
\left(\eta^{j}\right)^{\mathrm{T}}-\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)\left(z_{s}^{k}\right)^{\mathrm{T}} \\
\left(\phi^{j}\right)^{\mathrm{T}}-\delta t\left\{\frac{1}{F r} \boldsymbol{l}^{k}\left(z_{s}^{k}\right)^{\mathrm{T}}-\frac{1}{W e}\left(\boldsymbol{l}^{k}\left(\left(\kappa z_{s}\right)^{k}\right)^{\mathrm{T}}+z_{s}((k-1) \delta r) c_{k}^{\mathrm{T}}\right)\right\} \\
h_{t}^{j}-\delta t \frac{1}{F r} \\
h^{j} \\
a_{k}=\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)
\end{array}\right] \\
{[1,1, \ldots, 1]^{\mathrm{T}}, \quad b_{k}=\delta t\left(\frac{1}{F r} \boldsymbol{r}^{k}[1,1, \ldots, 1]^{\mathrm{T}}-\frac{1}{W e} c_{k}^{\mathrm{T}}\right),}
\end{array}\right]
$$

Superindex $k \longmapsto$ we kept the first k columns

Numerical Implementation

$$
\begin{gathered}
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j}, \\
F_{k}^{j}=\left[\begin{array}{c}
\left(\eta^{j}\right)^{\mathrm{T}}-\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)\left(z_{s}^{k}\right)^{\mathrm{T}} \\
\left(\phi^{j}\right)^{\mathrm{T}}-\delta t\left\{\frac{1}{F r} \boldsymbol{l}^{k}\left(z_{s}^{k}\right)^{\mathrm{T}}-\frac{1}{W e}\left(\boldsymbol{l}^{k}\left(\left(\kappa z_{s}\right)^{k}\right)^{\mathrm{T}}+z_{s}((k-1) \delta r) c_{k}^{\mathrm{T}}\right)\right\} \\
h_{t}^{j}-\delta t \frac{1}{F r} \\
h^{j}
\end{array}\right. \\
a_{k}=\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)[1,1, \ldots, 1]^{\mathrm{T}}, \quad b_{k}=\delta t\left(\frac{1}{F r} \boldsymbol{l}^{k}[1,1, \ldots, 1]^{\mathrm{T}}-\frac{1}{W e} c_{k}^{\mathrm{T}}\right), \\
c_{k}=\frac{2 k-1}{2 k(\delta r)^{2}} e_{k+1}
\end{gathered}
$$

Superindex $k \longmapsto$ we kept the first k columns Superindex k^{\prime}

Numerical Implementation

$$
\begin{gathered}
\boldsymbol{Q}_{k} W_{k}^{j+1}=F_{k}^{j}, \\
=\left[\begin{array}{c}
\left(\eta^{j}\right)^{\mathrm{T}}-\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)\left(z_{s}^{k}\right)^{\mathrm{T}} \\
\left(\phi^{j}\right)^{\mathrm{T}}-\delta t\left\{\frac{1}{F r} \boldsymbol{l}^{k}\left(z_{s}^{k}\right)^{\mathrm{T}}-\frac{1}{W e}\left(\boldsymbol{l}^{k}\left(\left(\kappa z_{s}\right)^{k}\right)^{\mathrm{T}}+z_{s}((k-1) \delta r) c_{k}^{\mathrm{T}}\right)\right\} \\
h_{t}^{j}-\delta t \frac{1}{F r} \\
h^{j}
\end{array}\right. \\
a_{k}=\left(\boldsymbol{l}^{k}-\frac{2 \delta t}{R e} \Delta_{H}^{k}\right)[1,1, \ldots, 1]^{\mathrm{T}}, \quad b_{k}=\delta t\left(\frac{1}{F r} r^{k}[1,1, \ldots, 1]^{\mathrm{T}}-\frac{1}{W e} c_{k}^{\mathrm{T}}\right), \\
c_{k}=\frac{2 k-1}{2 k(\delta r)^{2}} e_{k+1}
\end{gathered}
$$

Superindex $k \longmapsto$ we kept the first k columns Superindex $k^{\prime} \longrightarrow$ we kept all but the first k columns

We have a closed system of equations for each contact area that we test

We have a closed system of equations for each contact area that we test

We have a closed system of equations for each contact area that we test

We have a closed system of equations for each contact area that we test

Experiment

Experiment

Simulation

Experiment

Experiment by Dan Harris (Brown)

Droplets on a Shaking Free Surface

Droplets on a Shaking Free Surface

Droplets on a Shaking Free Surface

Each bounce triggers new waves

Droplets on a Shaking Free Surface

Each bounce triggers new waves
Waves determine following bounces

Droplets on a Shaking Free Surface

Droplets on a Shaking Free Surface

This is a non-linear, non-smooth dynamical system

Droplets on a Shaking Free Surface

$0.4 \mathrm{~mm}<D<1 \mathrm{~mm}$

This is a non-linear, non-smooth dynamical system

Droplets on a Shaking Free Surface

$0.4 \mathrm{~mm}<D<1 \mathrm{~mm}$

$$
\lambda \approx 5 \mathrm{~mm}
$$

This is a non-linear, non-smooth dynamical system

Droplets on a Shaking Free Surface

$0.4 \mathrm{~mm}<D<1 \mathrm{~mm}$
$\lambda \approx 5 \mathrm{~mm}$
$V_{z} \approx 10 \mathrm{~cm} / \mathrm{s}$

This is a non-linear, non-smooth dynamical system

Droplets on a Shaking Free Surface

$0.4 \mathrm{~mm}<D<1 \mathrm{~mm}$

$\lambda \approx 5 \mathrm{~mm}$
$V_{z} \approx 10 \mathrm{~cm} / \mathrm{s}$
$e \approx 2 \mu \mathrm{~m}$

This is a non-linear, non-smooth dynamical system

Droplets on a Shaking Free Surface

$0.4 \mathrm{~mm}<D<1 \mathrm{~mm}$
$\lambda \approx 5 \mathrm{~mm}$
$V_{z} \approx 10 \mathrm{~cm} / \mathrm{s}$
$e \approx 2 \mu \mathrm{~m}$
$f=40 \mathrm{~Hz}$

This is a non-linear, non-smooth dynamical system

Droplets on a Shaking Free Surface

$0.4 \mathrm{~mm}<D<1 \mathrm{~mm}$
$\lambda \approx 5 \mathrm{~mm}$
$V_{z} \approx 10 \mathrm{~cm} / \mathrm{s}$
$e \approx 2 \mu \mathrm{~m}$
$f=40 \mathrm{~Hz}$
$A \approx 10 \mu \mathrm{~m}$

This is a non-linear, non-smooth dynamical system

$t / T_{f}=0.00$

$t / T_{f}=0.00$

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/jfm. 2017.424

Non-wetting impact of a sphere onto a bath and its application to bouncing droplets

Carlos A. Galeano-Rios ${ }^{1}$, Paul A. Milewski ${ }^{11 \dagger}$ and J.-M. Vanden-Broeck ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
${ }^{2}$ Department of Mathematics, University College London, London, WC1E 6BT, UK
(Received 9 December 2016; revised 26 April 2017; accepted 6 June 2017)

Droplets Walking on a Free Surface

Video: Dan Harris \& John Bush

Droplets Walking on a Free Surface

Video: Dan Harris \& John Bush

Droplets Walking on a Free Surface

Walker

Video: Dan Harris \& John Bush

Droplets Walking on a Free Surface

Walker

$$
V_{x} \lesssim 1.5 \mathrm{~cm} / \mathrm{s}
$$

Video: Dan Harris \& John Bush

Droplets Walking on a Free Surface

$$
V_{z} \approx 10 \mathrm{~cm} / \mathrm{s}
$$

Walker

$$
V_{x} \lesssim 1.5 \mathrm{~cm} / \mathrm{s}
$$

Video: Dan Harris \& John Bush

Droplets Walking on a Free Surface

$$
V_{z} \approx 10 \mathrm{~cm} / \mathrm{s} \quad 0.4 \mathrm{~mm}<D<1 \mathrm{~mm}
$$

$$
V_{x} \lesssim 1.5 \mathrm{~cm} / \mathrm{s}
$$

Video: Dan Harris \& John Bush

Droplets Walking on a Free Surface

$$
V_{z} \approx 10 \mathrm{~cm} / \mathrm{s}
$$

$0.4 \mathrm{~mm}<D<1 \mathrm{~mm}$

$\lambda \approx 5 \mathrm{~mm}$

$$
V_{x} \lesssim 1.5 \mathrm{~cm} / \mathrm{s}
$$

Video: Dan Harris \& John Bush

Modelling a Walker

Modelling a Walker

Modelling a Walker

Modelling a Walker

Modelling a Walker

Modelling a Walker

Modelling a Walker

Modelling a Walker

Modelling a Walker

Modelling a Walker

Modelling a Walker

Quasi-normal free-surface impacts, capillary rebounds and application to Faraday walkers

C. A. Galeano-Rios ${ }^{1, \dagger}$, P. A. Milewski ${ }^{1}$ and J.-M. Vanden-Broeck ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
${ }^{2}$ Department of Mathematics, University College London, London WC1E 6BT, UK
(Received 4 December 2018; revised 9 May 2019; accepted 10 May 2019)

$$
\begin{aligned}
& \gamma / \gamma_{F}=0.22 \\
& \text { Large: }(1,1), \text { Small: }(1,1)
\end{aligned}
$$ Strobed at 80 Hz

Video from Galeano Rios et al 2018 Ratcheting droplet pairs (Chaos 2018)

$$
\begin{aligned}
& \gamma / \gamma_{F}=0.22 \\
& \text { Large: }(1,1), \text { Small: }(1,1)
\end{aligned}
$$ Strobed at 80 Hz

Video from Galeano Rios et al 2018 Ratcheting droplet pairs (Chaos 2018)

Video: Miles Couchman

Video from Galeano Rios et al 2018 Ratcheting droplet pairs (Chaos 2018)

Video: Miles Couchman

Video from Galeano Rios et al 2018 Ratcheting droplet pairs (Chaos 2018)

Video: Miles Couchman

Video from Galeano Rios et al 2018 Ratcheting droplet pairs (Chaos 2018)

Video: Miles Couchman

Video from Galeano Rios et al 2018 Ratcheting droplet pairs (Chaos 2018)

Ratcheting droplet pairs
C. A. Galeano-Rios, ${ }^{1, a)}$ M. M. P. Couchman, ${ }^{2, b)}$ P. Caldairou, ${ }^{2}$ and J. W. M. Bush ${ }^{2, c)}$
${ }^{1}$ Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
${ }^{2}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 2 April 2018; accepted 31 July 2018; published online 20 September 2018)

Thanks for your attention

Thanks for your attention

