

Bouncing and floating on a free surface: The kinematic match

Carlos Galeano-Rios

HyWEC 2

June 20th, 2019

<u>Collaborators:</u> Paul Milewski (University of Bath) Jean-Marc Vanden-Broeck (UCL)

Engineering and Physical Sciences Research Council

Experiments by Daniel Harris, Brown University

Experiments by Daniel Harris, Brown University

Perfectly Hydrophobic Rigid Sphere

Perfectly Hydrophobic Rigid Sphere

in the contact area

Perfectly Hydrophobic Rigid Sphere

in the contact area

Perfectly **Hydrophobic**

Perfectly **Hydrophobic** Rigid **Sphere**

$$\begin{split} \Delta \phi &= 0, & z \leqslant 0, \\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, & z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re} \Delta_H \phi - p_s, & z = 0; \end{split}$$

$$\begin{aligned} \Delta \phi &= 0, & z \leqslant 0, \\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, & z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re} \Delta_H \phi - p_s, & z = 0; \end{aligned}$$

 $\phi =$ Velocity Potential

$$\begin{aligned} \Delta \phi &= 0, & z \leqslant 0, \\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, & z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re} \Delta_H \phi - p_s, & z = 0; \end{aligned}$$

$$\label{eq:phi} \begin{split} \phi &= \text{Velocity Potential} \\ \eta &= \text{Free Surface Elevation} \end{split}$$

$$\begin{aligned} \Delta \phi &= 0, & z \leqslant 0, \\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, & z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re} \Delta_H \phi - p_s, & z = 0; \end{aligned}$$

 ϕ = Velocity Potential η = Free Surface Elevation p_s = Pressure on Free Surface

$$\begin{aligned} \Delta \phi &= 0, & z \leqslant 0, \\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, & z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re} \Delta_H \phi - p_s, & z = 0; \end{aligned}$$

 $\phi = \text{Velocity Potential}$ $\eta = \text{Free Surface Elevation}$ $p_s = \text{Pressure on Free Surface}$ $\Delta_H = \partial_{xx} + \partial_{yy}$

$$\begin{aligned} \Delta \phi &= 0, & z \leqslant 0, \\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, & z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re} \Delta_H \phi - p_s, & z = 0; \end{aligned}$$

 $\phi = \text{Velocity Potential}$ $\eta = \text{Free Surface Elevation}$ $p_s = \text{Pressure on Free Surface}$ $\Delta_H = \partial_{xx} + \partial_{yy}$

$\kappa = Curvature$

$$\begin{aligned} \Delta \phi &= 0, & z \leqslant 0, \\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, & z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re} \Delta_H \phi - p_s, & z = 0; \end{aligned}$$

 $\phi = \text{Velocity Potential}$ $\eta = \text{Free Surface Elevation}$ $p_s = \text{Pressure on Free Surface}$ $\Delta_H = \partial_{xx} + \partial_{yy}$

 $\kappa = \text{Curvature}$ $Re = V_0 R_o / \nu$

$$\begin{aligned} \Delta \phi &= 0, & z \leqslant 0, \\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, & z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re} \Delta_H \phi - p_s, & z = 0; \end{aligned}$$

 $\phi = \text{Velocity Potential}$ $\eta = \text{Free Surface Elevation}$ $p_s = \text{Pressure on Free Surface}$ $\Delta_H = \partial_{xx} + \partial_{yy}$

 $\kappa = \text{Curvature}$ $Re = V_0 R_o / \nu$ $Fr = V_0^2 / (gRo)$

$$\begin{aligned} \Delta \phi &= 0, & z \leqslant 0, \\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, & z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re} \Delta_H \phi - p_s, & z = 0; \end{aligned}$$

 $\phi = \text{Velocity Potential}$ $\eta = \text{Free Surface Elevation}$ $p_s = \text{Pressure on Free Surface}$ $\Delta_H = \partial_{xx} + \partial_{yy}$

$$\begin{split} \Delta \phi &= 0, & z \leqslant 0, \\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, & z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re} \Delta_H \phi - p_s, & z = 0; \\ \text{subject to} & \eta \to 0 & \text{when} & \sqrt{x^2 + y^2} \to \infty \\ \phi, \nabla \phi \to 0 & \text{when} & \sqrt{x^2 + y^2 + z^2} \to \infty. \end{split}$$

 $\phi = \text{Velocity Potential}$ $\eta = \text{Free Surface Elevation}$ $p_s = \text{Pressure on Free Surface}$ $\Delta_H = \partial_{xx} + \partial_{yy}$

 $\phi = \text{Velocity Potential}$ $\eta = \text{Free Surface Elevation}$ $p_s = \text{Pressure on Free Surface}$ $\Delta_H = \partial_{xx} + \partial_{yy}$

<u>A Non-local Formulation in Physical Space</u> $z \leqslant 0,$ $\Delta \phi = 0,$ $\eta_t = \frac{2}{Re} \Delta_H \eta + \phi_z$ z = 0, $\phi_t = -\frac{1}{Fr}\eta + \frac{1}{We} \kappa [\eta] + \frac{2}{Re}\Delta_H \phi - p_s, \qquad z = 0;$ subject to $\eta \to 0$ when $\sqrt{x^2 + y^2} \to \infty$ $\phi, \nabla \phi \to 0$ when $\sqrt{x^2 + y^2 + z^2} \to \infty$. $\phi_{z}(\mathbf{r}) = \frac{1}{2\pi} \lim_{\epsilon \to 0^{+}} \int_{\mathbb{R}^{2} \setminus B(\mathbf{r} \cdot \epsilon)} \frac{\phi(\mathbf{r}) - \phi(\mathbf{s})}{|\mathbf{r} - \mathbf{s}|^{3}} dA(\mathbf{s})$

 $\phi = \text{Velocity Potential}$ $\eta = \text{Free Surface Elevation}$ $p_s = \text{Pressure on Free Surface}$ $\Delta_H = \partial_{xx} + \partial_{yy}$

$$\begin{split} \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, \qquad \qquad z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \kappa \left[\eta \right] + \frac{2}{Re} \Delta_H \phi - p_s, \qquad z = 0; \\ \text{subject to} \qquad \eta \to 0 \qquad \text{when} \qquad \sqrt{x^2 + y^2} \to \infty \\ \phi, \nabla \phi \to 0 \qquad \text{when} \qquad \sqrt{x^2 + y^2 + z^2} \to \infty. \\ \phi_z \left(\mathbf{r} \right) &= \frac{1}{2\pi} \lim_{\epsilon \to 0^+} \int_{\mathbb{R}^2 \setminus B(\mathbf{r};\epsilon)} \frac{\phi \left(\mathbf{r} \right) - \phi \left(\mathbf{s} \right)}{|\mathbf{r} - \mathbf{s}|^3} dA(\mathbf{s}) \end{split}$$

 $\phi = \text{Velocity Potential}$ $\eta = \text{Free Surface Elevation}$ $p_s = \text{Pressure on Free Surface}$ $\Delta_H = \partial_{xx} + \partial_{yy}$

$$\begin{array}{l} \underline{A \text{ Non-local Formulation in Physical Space}}\\ \eta_t &= \frac{2}{Re} \Delta_H \eta + \phi_z, \qquad \qquad z = 0, \\ \phi_t &= -\frac{1}{Fr} \eta + \frac{1}{We} \ \kappa \left[\eta\right] + \frac{2}{Re} \Delta_H \phi - p_s, \qquad z = 0; \\ \text{subject to} \qquad \eta \to 0 \qquad \text{when} \qquad \sqrt{x^2 + y^2} \to \infty, \\ \phi, \nabla \phi \to 0 \qquad \text{when} \qquad \sqrt{x^2 + y^2 + z^2} \to \infty. \\ \phi_z \left(\mathbf{r}\right) &= \frac{1}{2\pi} \lim_{\epsilon \to 0^+} \int_{\mathbb{R}^2 \setminus B(\mathbf{r};\epsilon)} \frac{\phi \left(\mathbf{r}\right) - \phi \left(\mathbf{s}\right)}{|\mathbf{r} - \mathbf{s}|^3} dA(\mathbf{s}) \end{array}$$

$$\mathbf{Q}W^{j+1} = F^j,$$

$$\mathbf{Q}W^{j+1} = F^j,$$

$$\mathbf{Q} = \begin{bmatrix} \left(\mathbf{I} - \frac{2\delta t}{Re}\Delta_{H}\right) & -\delta tN & 0 & 0 & 0 \\ \delta t \left(\frac{1}{Fr}\mathbf{I} - \frac{1}{We}\Delta_{H}\right) & \left(\mathbf{I} - \frac{2\delta t}{Re}\Delta_{H}\right) & \delta t\mathbf{I} & 0 & 0 \\ 0 & 0 & -\delta t\frac{A}{M} & (1 + \delta tD) & 0 \\ 0 & 0 & 0 & -\delta t & 1 \end{bmatrix}$$

$$\mathbf{Q}W^{j+1} = F^j,$$

$$\boldsymbol{Q} = \begin{bmatrix} \left(\boldsymbol{I} - \frac{2\delta t}{Re}\Delta_{H}\right) & -\delta tN & 0 & 0 & 0 \\ \delta t \left(\frac{1}{Fr}\boldsymbol{I} - \frac{1}{We}\Delta_{H}\right) & \left(\boldsymbol{I} - \frac{2\delta t}{Re}\Delta_{H}\right) & \delta t\boldsymbol{I} & 0 & 0 \\ 0 & 0 & -\delta t\frac{A}{M} & (1 + \delta tD) & 0 \\ 0 & 0 & 0 & -\delta t & 1 \end{bmatrix}$$

$$W^{j+1} = \begin{bmatrix} \eta^{j+1} & \phi^{j+1} & p_s^{j+1} & h_t^{j+1} & h_t^{j+1} \end{bmatrix}^1,$$

$$\mathbf{Q}W^{j+1} = F^j,$$

$$\mathbf{Q} = \begin{bmatrix} \left(\mathbf{I} - \frac{2\delta t}{Re}\Delta_{H}\right) & -\delta tN & 0 & 0 & 0 \end{bmatrix} \\ \delta t \left(\frac{1}{Fr}\mathbf{I} - \frac{1}{We}\Delta_{H}\right) & \left(\mathbf{I} - \frac{2\delta t}{Re}\Delta_{H}\right) & \delta t\mathbf{I} & 0 & 0 \\ 0 & 0 & -\delta t\frac{A}{M} & (1 + \delta tD) & 0 \\ 0 & 0 & 0 & -\delta t & 1 \end{bmatrix}$$

$$W^{j+1} = \begin{bmatrix} \eta^{j+1} & \phi^{j+1} & p_s^{j+1} & h_t^{j+1} & h_t^{j+1} \end{bmatrix}^{\mathrm{T}},$$
$$F^j = \begin{bmatrix} \eta^j & \left(\phi^j + \frac{1}{We} \left(\kappa - \Delta_H\right) \eta^{j+1}\right) & \left(h_t^j - \delta t \ \frac{1}{Fr}\right) & h^j \end{bmatrix}^{\mathrm{T}}$$

 $\boldsymbol{Q}_k W_k^{j+1} = F_k^j,$

$$\boldsymbol{Q}_{k}W_{k}^{j+1} = F_{k}^{j},$$

$$\boldsymbol{q}_{k} = \begin{bmatrix} \left(\boldsymbol{I}^{k'} - \frac{2\delta t}{Re}\Delta_{H}^{k'}\right) & -\delta t \ N & 0 & 0 & a_{k} \\ \delta t \left(\frac{1}{Fr}\boldsymbol{I}^{k'} - \frac{1}{We}\Delta_{H}^{k'}\right) & \left(\boldsymbol{I} - \frac{2\delta t}{Re}\Delta_{H}\right) & \delta t\boldsymbol{I}^{k} & 0 & b_{k} \\ 0 & 0 & -\delta t\frac{A^{k}}{M} & (1 + \delta tD) & 0 \\ 0 & 0 & 0 & -\delta t & 1 \end{bmatrix}$$

$$\begin{aligned} \mathbf{Q}_{k}W_{k}^{j+1} &= F_{k}^{j}, \\ \mathbf{Q}_{k} &= \begin{bmatrix} \left(\mathbf{I}^{k'} - \frac{2\delta t}{Re}\Delta_{H}^{k'}\right) & -\delta t \ N & 0 & 0 & a_{k} \\ \delta t \left(\frac{1}{Fr}\mathbf{I}^{k'} - \frac{1}{We}\Delta_{H}^{k'}\right) & \left(\mathbf{I} - \frac{2\delta t}{Re}\Delta_{H}\right) & \delta t \mathbf{I}^{k} & 0 & b_{k} \\ 0 & 0 & -\delta t \frac{A^{k}}{M} & (1 + \delta t D) & 0 \\ 0 & 0 & 0 & -\delta t & 1 \end{bmatrix} \\ W^{j+1} &= \begin{bmatrix} \eta^{j+1,k'} & \phi^{j+1} & p_{s}^{j+1,k} & h_{t}^{j+1} & h^{j+1} \end{bmatrix}^{\mathrm{T}}, \end{aligned}$$

$$\begin{aligned} \boldsymbol{Q}_{k}W_{k}^{j+1} &= \boldsymbol{F}_{k}^{j}, \\ \boldsymbol{Q}_{k} &= \begin{bmatrix} \left(\boldsymbol{I}^{k'} - \frac{2\delta t}{Re}\Delta_{H}^{k'}\right) & -\delta t \ N & 0 & 0 & a_{k} \\ \delta t \left(\frac{1}{Fr}\boldsymbol{I}^{k'} - \frac{1}{We}\Delta_{H}^{k'}\right) & \left(\boldsymbol{I} - \frac{2\delta t}{Re}\Delta_{H}\right) & \delta t \boldsymbol{I}^{k} & 0 & b_{k} \\ 0 & 0 & -\delta t \frac{A^{k}}{M} & (1 + \delta t D) & 0 \\ 0 & 0 & 0 & -\delta t & 1 \end{bmatrix} \\ W^{j+1} &= \begin{bmatrix} \eta^{j+1,k'} & \boldsymbol{\phi}^{j+1} & p_{s}^{j+1,k} & h_{t}^{j+1} & h^{j+1} \end{bmatrix}^{\mathrm{T}}, \\ \text{Superindex} \quad k \end{aligned}$$

 $\boldsymbol{Q}_k W_k^{j+1} = F_k^j,$

$$Q_k W_k^{j+1} = F_k^j,$$

$$(\eta^j)^{\mathrm{T}} - \left(I^k - \frac{2\delta t}{Re}\Delta_H^k\right)(z_s^k)^{\mathrm{T}}$$

$$F_k^j = \begin{bmatrix} (\phi^j)^{\mathrm{T}} - \delta t \left\{\frac{1}{Fr}I^k(z_s^k)^{\mathrm{T}} - \frac{1}{We}(I^k((\kappa z_s)^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}})\right\} \\ h_t^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} - \frac{1}{We}(I^k((\kappa z_s)^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}})\right\} \\ h_t^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} - \frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}}\right\} \\ H_k^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} - \frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}}\right\} \\ H_k^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} - \frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}}\right\} \\ H_k^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} - \frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}}\right\} \\ H_k^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} - \frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}}\right\} \\ H_k^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} - \frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}}\right\} \\ H_k^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}}\right\} \\ H_k^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}}\right\} \\ H_k^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}}\right\} \\ H_k^j - \delta t \left\{\frac{1}{Fr}H_k^j(z_s^k)^{\mathrm{T}} + z_s((k-1)\delta r)c_k^{\mathrm{T}}\right\}$$

$$\begin{aligned} \mathbf{Q}_{k}W_{k}^{j+1} &= F_{k}^{j}, \\ (\eta^{j})^{\mathrm{T}} - \left(\mathbf{I}^{k} - \frac{2\delta t}{Re}\Delta_{H}^{k}\right)(z_{s}^{k})^{\mathrm{T}} \\ (\phi^{j})^{\mathrm{T}} - \delta t \left\{\frac{1}{Fr}\mathbf{I}^{k}(z_{s}^{k})^{\mathrm{T}} - \frac{1}{We}(\mathbf{I}^{k}((\kappa z_{s})^{k})^{\mathrm{T}} + z_{s}((k-1)\delta r)c_{k}^{\mathrm{T}})\right\} \\ h_{t}^{j} - \delta t \left\{\frac{1}{Fr}\right\} \\ a_{k} &= \left(\mathbf{I}^{k} - \frac{2\delta t}{Re}\Delta_{H}^{k}\right)[1, 1, \dots, 1]^{\mathrm{T}}, \end{aligned}$$

$$\begin{aligned} \mathbf{Q}_{k}W_{k}^{j+1} &= F_{k}^{j}, \\ (\eta^{j})^{\mathrm{T}} - \left(\mathbf{I}^{k} - \frac{2\delta t}{Re}\Delta_{H}^{k}\right)(z_{s}^{k})^{\mathrm{T}} \\ (\phi^{j})^{\mathrm{T}} - \delta t \left\{\frac{1}{Fr}\mathbf{I}^{k}(z_{s}^{k})^{\mathrm{T}} - \frac{1}{We}(\mathbf{I}^{k}((\kappa z_{s})^{k})^{\mathrm{T}} + z_{s}((k-1)\delta r)c_{k}^{\mathrm{T}})\right\} \\ h_{t}^{j} - \delta t \left\{\frac{1}{Fr} \\ h_{t}^{j} - \delta t \left\{\frac{1}{Fr}\right\} \\ h_$$

$$\begin{aligned} \mathbf{Q}_{k}W_{k}^{j+1} &= F_{k}^{j}, \\ (\eta^{j})^{\mathrm{T}} - \left(\mathbf{I}^{k} - \frac{2\delta t}{Re}\Delta_{H}^{k}\right)(z_{s}^{k})^{\mathrm{T}} \\ (\phi^{j})^{\mathrm{T}} - \delta t \left\{\frac{1}{Fr}\mathbf{I}^{k}(z_{s}^{k})^{\mathrm{T}} - \frac{1}{We}(\mathbf{I}^{k}((\kappa z_{s})^{k})^{\mathrm{T}} + z_{s}((k-1)\delta r)c_{k}^{\mathrm{T}})\right\} \\ h_{t}^{j} - \delta t \frac{1}{Fr} \\ a_{k} &= \left(\mathbf{I}^{k} - \frac{2\delta t}{Re}\Delta_{H}^{k}\right)[1, 1, \dots, 1]^{\mathrm{T}}, \qquad b_{k} = \delta t \left(\frac{1}{Fr}\mathbf{I}^{k}[1, 1, \dots, 1]^{\mathrm{T}} - \frac{1}{We}c_{k}^{\mathrm{T}}\right), \\ c_{k} &= \frac{2k-1}{2k(\delta r)^{2}}e_{k+1} \end{aligned}$$

$$\begin{aligned} \mathbf{Q}_{k}W_{k}^{j+1} &= F_{k}^{j}, \\ & (\eta^{j})^{\mathrm{T}} - \left(\mathbf{I}^{k} - \frac{2\delta t}{Re}\Delta_{H}^{k}\right)(z_{s}^{k})^{\mathrm{T}} \\ & (\phi^{j})^{\mathrm{T}} - \delta t \left\{\frac{1}{Fr}\mathbf{I}^{k}(z_{s}^{k})^{\mathrm{T}} - \frac{1}{We}(\mathbf{I}^{k}((\kappa z_{s})^{k})^{\mathrm{T}} + z_{s}((k-1)\delta r)c_{k}^{\mathrm{T}})\right\} \\ & h_{t}^{j} - \delta t \frac{1}{Fr} \\ & h_{t}^{j} - \delta t \frac{1}{Fr} \\ & h_{t}^{j} - \delta t \left(\frac{1}{Fr}\mathbf{I}^{k}[1, 1, \dots, 1]^{\mathrm{T}} - \frac{1}{We}c_{k}^{\mathrm{T}}\right), \\ & c_{k} = \frac{2k-1}{2k(\delta r)^{2}}e_{k+1} \end{aligned}$$

,

Superindex k

$$\begin{aligned} \mathbf{Q}_{k} W_{k}^{j+1} &= F_{k}^{j}, \\ (\eta^{j})^{\mathrm{T}} - \left(\mathbf{I}^{k} - \frac{2\delta t}{Re} \Delta_{H}^{k}\right) (z_{s}^{k})^{\mathrm{T}} \\ (\phi^{j})^{\mathrm{T}} - \delta t \left\{ \frac{1}{Fr} \mathbf{I}^{k} (z_{s}^{k})^{\mathrm{T}} - \frac{1}{We} (\mathbf{I}^{k} ((\kappa z_{s})^{k})^{\mathrm{T}} + z_{s} ((k-1)\delta r) c_{k}^{\mathrm{T}}) \right\} \\ h_{t}^{j} - \delta t \frac{1}{Fr} \\ h_{j}^{j} \\ a_{k} &= \left(\mathbf{I}^{k} - \frac{2\delta t}{Re} \Delta_{H}^{k}\right) [1, 1, \dots, 1]^{\mathrm{T}}, \qquad b_{k} = \delta t \left(\frac{1}{Fr} \mathbf{I}^{k} [1, 1, \dots, 1]^{\mathrm{T}} - \frac{1}{We} c_{k}^{\mathrm{T}}\right), \\ c_{k} &= \frac{2k - 1}{2k(\delta r)^{2}} e_{k+1} \end{aligned}$$

Superindex k we kept the first k columns

$$Q_{k}W_{k}^{j+1} = F_{k}^{j},$$

$$F_{k}^{j} = \begin{bmatrix} (\eta^{j})^{\mathrm{T}} - \left(I^{k} - \frac{2\delta t}{Re}\Delta_{H}^{k}\right)(z_{s}^{k})^{\mathrm{T}} \\ (\phi^{j})^{\mathrm{T}} - \delta t \left\{\frac{1}{Fr}I^{k}(z_{s}^{k})^{\mathrm{T}} - \frac{1}{We}(I^{k}((\kappa z_{s})^{k})^{\mathrm{T}} + z_{s}((k-1)\delta r)c_{k}^{\mathrm{T}})\right\} \\ h_{t}^{j} - \delta t \frac{1}{Fr} \\ h_{j}^{j} \end{bmatrix}$$

$$a_{k} = \left(I^{k} - \frac{2\delta t}{Re}\Delta_{H}^{k}\right)[1, 1, \dots, 1]^{\mathrm{T}}, \qquad b_{k} = \delta t \left(\frac{1}{Fr}I^{k}[1, 1, \dots, 1]^{\mathrm{T}} - \frac{1}{We}c_{k}^{\mathrm{T}}\right), \qquad c_{k} = \frac{2k-1}{2k(\delta r)^{2}}e_{k+1}$$

Superindex k' we kept the first k columns Superindex k'

$$Q_{k}W_{k}^{j+1} = F_{k}^{j},$$

$$(\eta^{j})^{\mathrm{T}} - \left(I^{k} - \frac{2\delta t}{Re}\Delta_{H}^{k}\right)(z_{s}^{k})^{\mathrm{T}}$$

$$(\phi^{j})^{\mathrm{T}} - \delta t \left\{\frac{1}{Fr}I^{k}(z_{s}^{k})^{\mathrm{T}} - \frac{1}{We}(I^{k}((\kappa z_{s})^{k})^{\mathrm{T}} + z_{s}((k-1)\delta r)c_{k}^{\mathrm{T}})\right\}$$

$$h_{t}^{j} - \delta t \frac{1}{Fr}$$

$$a_{k} = \left(I^{k} - \frac{2\delta t}{Re}\Delta_{H}^{k}\right)[1, 1, ..., 1]^{\mathrm{T}}, \qquad b_{k} = \delta t \left(\frac{1}{Fr}I^{k}[1, 1, ..., 1]^{\mathrm{T}} - \frac{1}{We}c_{k}^{\mathrm{T}}\right),$$

$$c_{k} = \frac{2k - 1}{2k(\delta r)^{2}}e_{k+1}$$

Superindexkwe kept the first k columnsSuperindexk'we kept all but the first k columns

Experiment by Dan Harris (Brown)

Droplets on a Shaking Free Surface

Each bounce triggers new waves

Each bounce triggers new waves Waves determine following bounces

This is a non-linear, non-smooth dynamical system

$0.4\,{\rm mm} < D < 1\,{\rm mm}$

This is a non-linear, non-smooth dynamical system

$0.4\,{\rm mm} < D < 1\,{\rm mm}$

This is a non-linear, non-smooth dynamical system

$0.4\,{\rm mm} < D < 1\,{\rm mm}$

$V_z \approx 10 \,\mathrm{cm/s}$

This is a non-linear, non-smooth dynamical system

$0.4\,{\rm mm} < D < 1\,{\rm mm}$

 $\lambda \approx 5 \,\mathrm{mm}$

$V_z \approx 10 \,\mathrm{cm/s}$

 $e \approx 2 \mu \mathrm{m}$

This is a non-linear, non-smooth dynamical system

$0.4\,{\rm mm} < D < 1\,{\rm mm}$

 $\lambda \approx 5\,\mathrm{mm}$

 $e \approx 2 \mu \mathrm{m}$

$V_z \approx 10 \,\mathrm{cm/s}$

$f = 40 \,\mathrm{Hz}$

This is a non-linear, non-smooth dynamical system

$0.4\,{\rm mm} < D < 1\,{\rm mm}$

 $\lambda \approx 5 \,\mathrm{mm}$

$V_z \approx 10 \,\mathrm{cm/s}$

 $e \approx 2 \mu \mathrm{m}$

 $f = 40 \,\mathrm{Hz}$

 $A \approx 10 \,\mu\mathrm{m}$

This is a non-linear, non-smooth dynamical system

J. Fluid Mech. (2017), vol. 826, pp. 97–127. © Cambridge University Press 2017 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/jfm.2017.424

Non-wetting impact of a sphere onto a bath and its application to bouncing droplets

Carlos A. Galeano-Rios¹, Paul A. Milewski^{1,†} and J.-M. Vanden-Broeck²

¹Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK ²Department of Mathematics, University College London, London, WC1E 6BT, UK

(Received 9 December 2016; revised 26 April 2017; accepted 6 June 2017)

97

 $V_x \lesssim 1.5 \,\mathrm{cm/s}$

 $V_z \approx 10 \,\mathrm{cm/s}$

Video: Dan Harris & John Bush

Walker

 $V_z \approx 10 \,\mathrm{cm/s}$

$0.4\,\mathrm{mm} < D < 1\,\mathrm{mm}$

 $V_x \lesssim 1.5 \,\mathrm{cm/s}$

 $V_z \approx 10 \,\mathrm{cm/s}$

$0.4\,\mathrm{mm} < D < 1\,\mathrm{mm}$

 $\lambda \approx 5 \,\mathrm{mm}$

Quasi-normal free-surface impacts, capillary rebounds and application to Faraday walkers

C. A. Galeano-Rios^{1,†}, P. A. Milewski¹ and J.-M. Vanden-Broeck² ¹Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK ²Department of Mathematics, University College London, London WC1E 6BT, UK (Received 4 December 2018; revised 9 May 2019; accepted 10 May 2019)

CHAOS 28, 096112 (2018)

Ratcheting droplet pairs

C. A. Galeano-Rios,^{1,a)} M. M. P. Couchman,^{2,b)} P. Caldairou,² and J. W. M. Bush^{2,c)} ¹Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom ²Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 2 April 2018; accepted 31 July 2018; published online 20 September 2018)

Thanks for your attention

Video: Dan Harris & John Bush

Thanks for your attention

Video: Dan Harris & John Bush