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Today you will see…
… how we can change the 
shape of an Oscillating Wave 
Surge Converter (OWSC) to 
maximize energy production.
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The gate model is similar to that of Carrier (1970) 
except for a weak horizontal deviation of the gate 
wetted surface about the vertical plane.
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State of the art
• The hydrodynamics of flaps has been extensively analysed in the past. Hereafter few works:

• Parsons & Martin (1992, 1994, 1995), Evans & Porter (1996), Dean & Dalrymple 
(1991), Mei et al. (2005), Falnes (2007), Linton & McIver (2001), Porter (2014).

• Plates

• OWSCs in a channel • Renzi & Dias (2012, 2013), Sammarco et al. (2013).

• OWSCs in open sea • Renzi & Dias (2013, 2014), Michele et al. (2015, 2016), Noad & Porter 
(2015).

• Li & Mei (2003), Mei et al. (1994), Adamo & Mei (2005).• Venice gates

• Sammarco et al. (1997), Vittori et al. (1996).• Nonlinear theories

• And so on…
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Motivation of the study
• Most wave theories applied to OWSCs neglect nonlinear hydrodynamic-related terms
• Recently, Michele et al. (2018) showed that occurrence of subharmonic resonance and mode competition 

of trapped modes increases efficiency

Capture Factor vs Detuning 
incoming uniform waves

• Analytical solutions exist for simple geometries (rectangular, circular, elliptical,…)
• In this study we analyse the effects of more complex geometries in nonlinear regimes

Period doubling scenarios in 
modulated incident waves

Plan geometry and side view of the array 



Mathematical model

Governing equation

Non-dimensional quantities  

Two small parameters  

No-flux boundary conditions

Gate surface equation  
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Boundary conditions on the free surface



Kinematic condition on the array surface

Equation of motion of the qth gate coupled with a linear damper
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Mathematical model

Non-dimensional mass

Non-dimensional stiffness

Non-dimensional PTO coefficient



7

Multiple-scale analysis and three timing
Let us introduce the following expansion for the unknowns

Three-timing is necessary to avoid 
secularity at the second and third 
order

Higher order solutions imply higher 
harmonics. Return in physical variables 
and assume the following expansion
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Multiple-scale analysis and three timing

The nonlinear set of governing 
equations and boundary conditions is 
decomposed in a sequence of linear 
boundary-value problems of order n and 
harmonic m

The forcing terms Fnm, Bnm , Gnm and Dnm
are defined for each order.



Leading order solution O(1)
Zero-th harmonic unforced with 
homogeneous b.c.

First harmonic yields the trapped mode solution
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Dispersion relation Real coefficients

Solution of the equation of moton gives (Q-1) out-of-phase natural trapped modes and related
eigenfrequencies
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Leading order solution O(1) 
• Examples of (Q-1) trapped modes for an array of Q=5 gates
• The number over each gate represents the normalized amplitude

• Even modes

• Odd modes



Second order problem O(ε): zero-th harmonic
Forcing terms on the free surface and on the gate surface yield a second order drift

Bound wave

Static 
displacement

• No dependence on 
the gate shape δ

• 𝑋  does not affect
power extraction

Second order problem O(ε): first harmonic 
The gate shape
’forces’ the first 
harmonic problem
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Solvability condition



Second order problem O(ε): first harmonic – the gate shape
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Evolution equation

δ=0 (flat gate) implies cδ =0 
thus Χ depends on the slow 
time scale t2 only

Solution
cδ represents a modulation of 
the modal amplitude growth
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Response to synchronous incident waves
This is a diffraction – radiation problem forced by the incident wave field. The gates move at unison in phase.

Linearity allows the following decomposition

Velocity potential incident
waves of amplitude A Scattered wave potential Radiation potential

Gate response
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Third order solution O(ε2) – zeroth harmonic
At this order we invoke the solvability condition applying Green’s theorem

Solution of the integrals above gives

Where the forcing terms on the free surface and on the gate surface are given by

No drift at the leading order
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Third order solution O(ε2) – First harmonic
At this order we invoke again the solvability condition applying Green’s theorem

If we assume a small detuning 2Δω with Δω/ω⁓ ε2 where

This is the evolution equation of the Ginzburg-Landau type. The coefficients cA and cB represent detuning 
and damping caused by the shape of the array, cN represents the shift of the eigenfrequency from the 
incident wave frequency, cR is the radiation damping due to wave radiation, cS and cU represent the energy 
influx by the incident waves while cL represents damping due to the PTO mechanism. 

Usage of action-angle variables expressed by 𝜗 𝑅𝑒 yields

Non-trivial fixed points
One stable point or three roots, i.e. two
stable points and an unstable saddle
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Results for uniform incident waves and Q=2 gates

Nonlinear synchronous excitation is possible for 
𝛿 and 𝛿

Depth: h=5 m; Gate width: a=5 m; Incident wave 
amplitude: A=0.1 m.

Gate shape functions

Equilibrium branches (ω=1.2 rad s-1)
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Results for uniform incident waves and Q=2 gates
Generated power Capture factor Energy flux

Behaviour of the maximum value of the capture factor due to nonlinear synchronous resonance

In the presence of small-
amplitude incident waves and 
trapped modes, a device 
designed to resonate 
synchronously can still 
achieve significant efficiency.
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Subharmonic resonance
The evolution equation is similar to the synchronous case and admits both trivial and non-trivial fixed points

By using

We obtain the unstable (R-) and stable branches (R+)

The flat configuration is the most efficient. This is
because the coefficient cB generates hydrodynamic
damping.
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Thank you for your attention
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