Wave generation techniques using the Boussinesq-Abbott \& Green-Naghdi equations

Lisl Weynans ${ }^{1}$ (joint work with D. Lannes)
Maria Kazolea ${ }^{2}$

IMB ${ }^{1}$
INRIA Boredeaux Sud-Ouest ${ }^{2}$
Cardamom team

June 182019

Dimensionless Nonlinear Boussinesq Equations

- Dimensionless Boussinesq system

$$
\left\{\begin{array}{l}
\partial_{t} \zeta+\partial_{x} q=0 \\
\left(1-\frac{\mu}{3} \partial_{x}^{2}\right) \partial_{t} q+\partial_{x}\left(\frac{1}{2 \varepsilon} h^{2}+\varepsilon \frac{1}{h} q^{2}\right)=0
\end{array}\right.
$$

- Coupling surface elevation ζ above rest state to horizontal discharge q
- ε and μ respectively called nonlinearity and shallowness parameters
- Initial conditions

$$
(\zeta, q)(t=0, x)=\left(\zeta^{0}, q^{0}\right)(x)
$$

\Rightarrow How to impose the generating boundary condition $\zeta(t, x=0)=f(t)$?

Propagation of solitary wave

Propagation of the soliton, $N_{x}=200$

Generating boundary condition?

$$
\left\{\begin{array}{l}
\partial_{t} \zeta+\partial_{x} q=0, \\
\left(1-\frac{\mu}{3} \partial_{x}^{2}\right) \partial_{t} q+\partial_{x}\left(\frac{1}{2 \varepsilon} h^{2}+\varepsilon \frac{1}{h} q^{2}\right)=0,
\end{array}\right.
$$

with initial and boundary conditions

$$
(\zeta, q)(t=0, x)=\left(\zeta^{0}, q^{0}\right)(x), \quad \zeta(t, x=0)=f(t) .
$$

- For periodic boundary conditions : inversion of operator ($1-\frac{\mu}{3} \partial_{\chi}^{2}$) ok
- For a generating boundary condition : not possible to use Riemann invariants as in Nonlinear Shallow Water case
- Inversion of $\left(1-\frac{\mu}{3} \partial_{x}^{2}\right)$ on the half-line $(0, \infty)$: need of a boundary condition on $\partial_{t} q$!

Generating boundary condition

$$
\left\{\begin{array}{l}
\partial_{t} \zeta+\partial_{x} q=0 \\
\left(1-\frac{\mu}{3} \partial_{x}^{2}\right) \partial_{t} q+\partial_{x}\left(\frac{1}{2 \varepsilon} h^{2}+\varepsilon \frac{1}{h} q^{2}\right)=0
\end{array}\right.
$$

with initial and boundary conditions

$$
(\zeta, q)(t=0, x)=\left(\zeta^{0}, q^{0}\right)(x), \quad \zeta(t, x=0)=f(t)
$$

Strategy :

- use the inverse of operator $\left(1-\frac{\mu}{3} \partial_{x}^{2}\right)$ with homogeneous Dirichlet BC
- construct the dispersive boundary layer accounting for the non-zero boundary value of q

Reformulation of the Boussinesq equations as a system

- with a nonlocal flux
- and a source term accounting for the dispersive boundary layer

Nonlinear Boussinesq Equations

Definition

We denote by R_{0} and R_{1} the inverse of the operator $\left(1-\frac{\mu}{3} \partial_{x}^{2}\right)$ with homogeneous Dirichlet and Neumann boundary conditions:

$$
R_{0}: \begin{array}{ll}
L^{2}\left(\mathbb{R}_{+}\right) & \rightarrow H^{2}\left(\mathbb{R}_{+}\right) \\
f & \mapsto u,
\end{array} \quad \text { where } \quad\left\{\begin{array}{l}
\left(1-\frac{\mu}{3} \partial_{x}^{2}\right) u=f \\
u(0)=0
\end{array}\right.
$$

and

$$
R_{1}: \begin{array}{ll}
L^{2}\left(\mathbb{R}_{+}\right) & \rightarrow H^{2}\left(\mathbb{R}_{+}\right) \\
f & \mapsto v,
\end{array} \quad \text { where } \quad\left\{\begin{array}{l}
\left(1-\frac{\mu}{3} \partial_{x}^{2}\right) v=f \\
\partial_{x} v(0)=0
\end{array}\right.
$$

Lemma
For all $f \in L^{2}\left(\mathbb{R}_{+}\right)$,

$$
R_{0} \partial_{x} f=\partial_{x} R_{1} f
$$

Notation : $\underline{R}_{1} f=\left(R_{1} f\right)_{\mid \mathrm{\mid x}=0}$ and $q(t)=q(t, x=0)$

Boussinesq Equations : dispersive boundary layer

$$
\left\{\begin{array}{l}
\partial_{t} \zeta+\partial_{x} q=0, \\
\left(1-\frac{\mu}{3} \partial_{x}^{2}\right) \partial_{t} q+\partial_{x}(\mp(\zeta, q))=0, \quad \text { with } \mp(\zeta, q)=\frac{1}{2 \varepsilon} h^{2}+\varepsilon \frac{1}{h} q^{2}
\end{array}\right.
$$

- The ODE

$$
Y-\frac{\mu}{3} Y^{\prime \prime}=f, \quad Y(0)=Y_{0}
$$

admits a unique solution given by

$$
Y(x)=R_{0} f+Y_{0} \exp \left(-\frac{x}{\delta}\right) \quad \text { with } \quad \delta=\sqrt{\frac{\mu}{3}},
$$

- Thus the second equation of Boussinesq system can be written equivalently

$$
\begin{gathered}
\partial_{t} \boldsymbol{q}=-R_{0} \partial_{x}(\tilde{\mathrm{f}}(\zeta, q))+\underbrace{\dot{q} \exp \left(-\frac{x}{\delta}\right)}_{\text {dispersive boundary layer }} . \\
\Rightarrow \text { Need to compute } \underline{\dot{q}}
\end{gathered}
$$

How to compute \underline{q} ?

$$
\partial_{t} q+\partial_{x} R_{1}(\tilde{f}(\zeta, q))=\underline{\dot{q}} \exp \left(-\frac{x}{\delta}\right) .
$$

- Differenciating with respect to x

$$
\partial_{t} \partial_{x} q+\partial_{x}^{2} R_{1}(\mathfrak{f}(\zeta, q))=-\frac{1}{\delta} \underline{\dot{q}} \exp \left(-\frac{x}{\delta}\right) .
$$

- Substitution $\partial_{t} \partial_{x} q=-\partial_{t}^{2} \zeta$

$$
-\partial_{t}^{2} \zeta+\partial_{x}^{2} R_{1}(\mathfrak{f}(\zeta, q))=-\frac{1}{\delta} \underline{\dot{q}} \exp \left(-\frac{x}{\delta}\right)
$$

- Using $\left(1-\frac{\mu}{3} \partial_{x}^{2}\right) R_{1}=I d$

$$
\partial_{t}^{2} \zeta=\frac{1}{\delta^{2}}\left(R_{1}-\operatorname{Id}\right)(\tilde{f}(\zeta, q))+\frac{1}{\delta} \underline{\dot{q}} \exp \left(-\frac{x}{\delta}\right)
$$

- At $x=0$, formula for $\underline{\dot{a}}$:

$$
\underline{\ddot{\zeta}}=\frac{1}{\delta^{2}}\left[\underline{R_{1}}(\tilde{f}(\zeta, q))-\tilde{f}(\underline{\zeta}, \underline{q})\right]+\frac{1}{\delta} \underline{\dot{q}}
$$

Equivalent form of Boussinesq Equations

$$
\left\{\begin{array}{l}
\partial_{t} \zeta+\partial_{x} \boldsymbol{q}=0, \\
\left.\partial_{t} \boldsymbol{q}+\partial_{x} R_{1} \mathfrak{f} \zeta, \zeta\right)=\underline{q}(\underline{q}, f, \ddot{f}, \zeta, q) \exp \left(-\frac{x}{\delta}\right), \\
\underline{\dot{q}}=\underline{Q}(\underline{q}, f, \ddot{f}, \zeta, q),
\end{array}\right.
$$

with

$$
\begin{aligned}
\mathfrak{f}(\zeta, q) & =\frac{1}{2 \varepsilon}\left(h^{2}-1\right)+\varepsilon \frac{1}{h} q^{2} \quad(=\text { flux for NLSW momentum }) \\
\underline{Q}(\underline{q}, f, \ddot{f}, \zeta, q) & =\frac{\varepsilon}{\delta} \frac{q^{2}}{1+\varepsilon f}+\delta \ddot{f}+\frac{1}{\delta}\left(1+\frac{\varepsilon}{2} f\right) f-\frac{1}{\delta} \underline{R}_{f} f(\zeta, q),
\end{aligned}
$$

+ initial data and and boundary condition $\zeta(t, x=0)=f(t)$.

Discretization

- Lax-Friedrichs scheme for U_{i}^{n}, explicit Euler scheme for the ODE on q,
- Non-local flux $\mathfrak{f}_{\mu}(U)=R_{1} \mathfrak{f}(U)$ computed with second-order centered finite-differences

$$
\begin{cases}\frac{U_{i}^{n+1}-U_{i}^{n}}{\delta_{t}}+\frac{1}{\delta_{x}}\left(\mathscr{F}_{\mu, i+1 / 2}^{n}-\mathscr{F}_{\mu, i-1 / 2}^{n}\right)=S_{i}^{n}, & i \geq 1, \quad n \geq 1, \\ \frac{q^{n+1}-\underline{q}^{n}}{\delta_{t}}=\underline{Q}\left(\underline{q}^{n}, f^{n}, \ddot{f}^{n}, \zeta^{n}, q^{n}\right) & n \geq 1,\end{cases}
$$

where $U^{n}=\left(\zeta_{i}^{n}, q_{i}^{n}\right)_{i \geq 1}^{T}, \mathfrak{F}_{\mu}(U)=\left(q, \mathfrak{f}_{\mu}(U)\right)^{T}$ and

$$
S_{i}^{n}=\binom{0}{\underline{Q}\left(\underline{q}^{n}, f^{n}, \ddot{f}^{n}, \zeta^{n}, q^{n}\right) \exp \left(-\frac{x_{i}}{\delta}\right)}
$$

- Computational cost similar to the case of periodic conditions

Propagation of solitary wave

Decomposition of $\partial_{t} q$ into $\partial_{t} q=-\partial_{x} R_{1}(\mathfrak{f}(\zeta, q))+\dot{q} \exp \left(-\frac{x}{\delta}\right)$ (dispersive boundary layer and solution of homogenous problem)

The physical problem

η : free surface elevation;
h_{0} : steel water level;
$b(x)$: bottom's topography variation; $h(x, t)=h_{0}+\eta(x, t)-b(x): \quad$ total water depth; $u(x, t)$: flow velocity;

Mathematical model : The SW \& GN equations

One dimensional form :

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(I+\alpha \mathcal{T})\left[(h u)_{t}+\left(h u^{2}\right)_{x}+g \frac{\alpha-1}{\alpha} h \eta_{x}\right]+\frac{g}{\alpha} h \eta_{x}+h \tilde{Q}(u) & =0
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{T}(\cdot) & =-\frac{1}{3} h^{2}(\cdot)_{x x}-\frac{1}{3} h h_{x}(\cdot)_{x}+\frac{1}{3}\left[h_{x}^{2}+h h_{x x}\right](\cdot)+\left[b_{x} h_{x}+\frac{1}{2} h b_{x x}+b_{x}^{2}\right](\cdot) \\
\tilde{Q}(\cdot) & \left.=2 h h_{x}(\cdot)_{x}^{2}+\frac{4}{3} h^{2}(\cdot)_{x}(\cdot)\right)_{x x}+b_{x} h(\cdot)_{x}^{2}+b_{x x} h(\cdot)(\cdot)_{x} \\
& +\left[b_{x x} h_{x}+\frac{1}{2} h b_{x x x}+b_{x} b_{x x}\right](\cdot)^{2}
\end{aligned}
$$

Mathematical model : The SW \& GN equations

One dimensional form :

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(I+\alpha \mathcal{T})\left[(h u)_{t}+\left(h u^{2}\right)_{x}+g \frac{\alpha-1}{\alpha} h \eta_{x}\right]+\frac{g}{\alpha} h \eta_{x}+h \tilde{Q}(u) & =0
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{T}(\cdot) & =-\frac{1}{3} h^{2}(\cdot)_{x x}-\frac{1}{3} h h_{x}(\cdot)_{x}+\frac{1}{3}\left[h_{x}^{2}+h h_{x x}\right](\cdot)+\left[b_{x} h_{x}+\frac{1}{2} h b_{x x}+b_{x}^{2}\right](\cdot) \\
\tilde{Q}(\cdot) & \left.=2 h h_{x}(\cdot)_{x}^{2}+\frac{4}{3} h^{2}(\cdot)\right)_{x}(\cdot)_{x x}+b_{x} h(\cdot)_{x}^{2}+b_{x x} h(\cdot)(\cdot)_{x} \\
& +\left[b_{x x} h_{x}+\frac{1}{2} h b_{x x x}+b_{x} b_{x x}\right](\cdot)^{2}
\end{aligned}
$$

Dispersion relation

$$
\omega^{2}=g h_{0} k^{2} \frac{1+\frac{\alpha-1}{3} k^{2} h_{0}^{2}}{1+\frac{\alpha}{3} k^{2} h_{0}^{2}} .
$$

where $\alpha=1.159$

Mathematical model : Elliptic-hyperbolic decoupling

Re-write the system as :

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(I+\alpha \mathcal{T})\left[(h u)_{t}+\left(h u^{2}\right)_{x}+g h \eta_{x}\right]-\mathcal{T}\left(g h \eta_{x}\right)+h \tilde{Q}(u) & =0
\end{aligned}
$$

Mathematical model : Elliptic-hyperbolic decoupling

Re-write the system as :

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(I+\alpha \mathcal{T})\left[(h u)_{t}+\left(h u^{2}\right)_{x}+g h \eta_{x}\right]-\mathcal{T}\left(g h \eta_{x}\right)+h \tilde{Q}(u) & =0
\end{aligned}
$$

$$
\begin{aligned}
(I+\alpha \mathcal{T}) \phi & =\mathcal{W}-\mathcal{R} \\
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}\right)_{x}+g h \eta_{x} & =\phi
\end{aligned}
$$

where $\mathcal{W}=g \mathcal{T}\left(h \eta_{x}\right)$ and $\mathcal{R}=h \tilde{Q}(u)$.

Mathematical model : Elliptic-hyperbolic decoupling

Re-write the system as :

$$
\begin{aligned}
& h_{t}+(h u)_{x}=0 \\
& (I+\alpha \mathcal{T})\left[(h u)_{t}+\left(h u^{2}\right)_{x}+g h \eta_{x}\right]-\mathcal{T}\left(g h \eta_{x}\right)+h \tilde{Q}(u)=0 \\
& (I+\alpha \mathcal{T}) \phi=\mathcal{W}-\mathcal{R} \\
& h_{t}+(h u)_{x}=0 \\
& (h u)_{t}+\left(h u^{2}\right)_{x}+g h \eta_{x}=\phi \\
& \text { where } \mathcal{W}=g \mathcal{T}\left(h \eta_{x}\right) \text { and } \mathcal{R}=h \tilde{Q}(u) \text {. }
\end{aligned}
$$

Two step solution

(1) An elliptic step solving for the non-hydrostatic term ϕ;
(2) An hyperbolic step evolving the flow variables .

Structure of the code :

Go to : https ://mskazolea.wixsite.com/personal files : main.m, flux.m, get_PHI.m, limiter.m, muscl.m, primitive.m, boundary.m wave_generation.m

Structure of the code :

Go to : https ://mskazolea.wixsite.com/personal files : main.m, flux.m, get_PHI.m, limiter.m, muscl.m, primitive.m, boundary.m wave_generation.m

main.m :

- Input values provided by the users
- Intialization of the solution
- RK3 loop in time
- For each RK step $p=1,2,3$
(Find the fluxes \rightarrow flux.m(Third order FV scheme)
Update the value of h^{p}
Find the non Hydrostatic terms (if GN are solved) \rightarrow get_PHI.m(C^{0} Galerkin
Update the value of $(h u)^{p}$
Sponge layers \rightarrow sponge.m
- Find new dt

Wave generation : internal wave generation

- Common technique for BT models. (Wei \&Kirby 1999)
- A source term added to the governing equations
(1) In a form of a mass source
(2) An applied pressure forcing the momentum equations

Wave generation : internal wave generation

- Common technique for BT models. (Wei \&Kirby 1999)
- A source term added to the governing equations
(1) In a form of a mass source
(2) An applied pressure forcing the momentum equations
- Derivation from the linearized Boussinesq.
- Different tuning for different BT model.

Wave generation : internal wave generation

$$
h_{t}+(h u)_{x}=f(x, t)
$$

Wave generation : internal wave generation

$$
h_{t}+(h u)_{x}=f(x, t)
$$

where

$$
f(x, t)=D \sin (-\omega t) \exp \left(B s(x-x 0)^{2}\right)
$$

for a given wave frequency ω wave direction θ, wave amplitude η_{0} water depth h and source width parameter Bs the corresponding source amplitude D can be determined by

$$
D=\frac{2 \eta_{0}\left(\omega^{2}-\alpha_{1} g k^{4} h^{3}\right) \cos \theta}{\omega l_{1} k\left[1-\alpha(k h)^{2}\right]}
$$

Absorbing boundaries : sponge layer approach

- They should dissipate the energy of incoming waves perfectly, in order to eliminate unphysical reflections.

Absorbing boundaries : sponge layer approach

- They should dissipate the energy of incoming waves perfectly, in order to eliminate unphysical reflections.
- A sponge layer is defined in-front of the physical boundary. First proposed by Larsen and Dancy 1983

Absorbing boundaries : sponge layer approach

- They should dissipate the energy of incoming waves perfectly, in order to eliminate unphysical reflections.
- A sponge layer is defined in-front of the physical boundary. First proposed by Larsen and Dancy 1983

Absorbing boundaries : sponge layer approach

- They should dissipate the energy of incoming waves perfectly, in order to eliminate unphysical reflections.
- A sponge layer is defined in-front of the physical boundary. First proposed by Larsen and Dancy 1983

- On it the surface elevation and/or the fluxes are damped multiplying their values by a coefficient $\mu(x)$ after the computation of q^{n+1}
- Choice of $\mu(x)$?

Absorbing boundaries : sponge layer approach (cont)

- Tonelli and Petti (2009) :

$$
\mu(x)=\left\{\begin{array}{l}
0.5+0.5 * \cos \left(\pi \frac{L_{s}}{\left(L_{s}-D(x)\right)}\right), \quad D \leq L_{s} \\
1, D \geq L_{s}
\end{array}\right.
$$

Absorbing boundaries : sponge layer approach (cont)

- Wu (2004) :

$$
\mu(x)=\sqrt{1-\left(\frac{1-D(x)}{L_{s}}\right)^{2}}
$$

Ls-sponge layer width, $D(x)=$ normal distance between the cell center with coordinates x and the absorbing boundary.

Absorbing boundaries : sponge layer approach (cont)

- Larsen and Dancy (1983)

$$
\mu(x)= \begin{cases}\exp \left(\left(2^{d / \Delta d}-2^{-L_{s} / \Delta d}\right) / n a\right), & 0 \leq d \leq L_{s} \\ 1, & d_{s}<d\end{cases}
$$

d - distance between the point on the sponge layer and the boundary, Δd -dimension of the elements, a-parameter

Absorbing boundaries using extra damping terms

- Artificial damping terms F_{b} are added to the right hand side of the equation(s).
- General notation (Israeli and Orzag) :

$$
\begin{equation*}
F_{b}=-\omega_{1}(x) u+\omega_{2}(x) u_{x x}+\omega_{3}(x) \sqrt{\frac{g}{h}} \eta \tag{1}
\end{equation*}
$$

where $\omega_{i}=c_{i} \omega f(x)$

$$
f(x)=\frac{\exp \left(\left(x-x_{s}\right) / L_{s}\right)^{2}-1}{\exp (1)-1}
$$

Absorbing boundaries using extra damping terms (cont)

- Different works use different coefficients e.g.
- Kirby et al. use (1) mainly with $c_{1}=10, c_{2}=c_{3}=0$; adding the terms only to the momentum equation.
- Klonaris et al. add (1) only in the momentum equation with $c_{3}=0$
- Filippini et al $\omega_{1}=\omega_{3}=0$ and $\omega_{2}=0.1$ with

$$
f(x)=\frac{\exp \left(\left(x-x_{s}\right) / L_{s}\right)^{c}-1}{\exp (1)-1}
$$

adding the terms to all the equations. c-parameter.

Absorbing boundaries using extra damping terms (cont)

- Different works use different coefficients e.g.
- Kirby et al. use (1) mainly with $c_{1}=10, c_{2}=c_{3}=0$; adding the terms only to the momentum equation.
- Klonaris et al. add (1) only in the momentum equation with $c_{3}=0$
- Filippini et al $\omega_{1}=\omega_{3}=0$ and $\omega_{2}=0.1$ with

$$
f(x)=\frac{\exp \left(\left(x-x_{s}\right) / L_{s}\right)^{c}-1}{\exp (1)-1}
$$

adding the terms to all the equations. c-parameter.

- Attention ! on how these terms affect the stability of the scheme

References:

(1) Israeli and Orzag, 1981. Approximation of radiation boundary conditions, J. Comp. Phys,41,15-135.
(2) Kirby,J., Wei, G., Chen, Q., Kennedy, A. and Dalrymple, A. Funwave 1.0, 1998. Fully non-linear wave Model, Documentation and User's Manual.
(3) A.G.Filippini, M. Kazolea and M. Ricchiuto, A flexible and genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up, J.C.P., 130, 381-417,2016
(4) Tonelli, M and Petti, M, 2009. Hybrid finite volume-finite difference scheme for 2HD improved Boussiesq equarions, Coastal Eng.,56.
(5) Larsen, J. and Dancy, 1983.H. Open boundaries in short wave simulation- a new approach. Coastal Eng, 7, 285-297.
(6) Wu, T.-R., 2004. A numerical study of three dimensional breaking waves and turbulence effects, Ph.D. thesis. Cornell University.

