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General approach

Floating device: ship or wave energy convertor

Notation

If f is defined on Rd , we write

fi = f|I
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In the fluid domain Ωt

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

div U = 0,

curl U = 0

At the surface

∀X ∈ E(t), P(t,X ) = Patm,

∀X ∈ Rd , ∂tζ − U · N = 0 ,

At the bottom

Ub · Nb = 0.

Constraint in the interior domain

The surface of the fluid coincides with the wetted portion of the body

ζi = ζw
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Coupling(s)

Interior/Exterior coupling on Γ(t) := ∂I(t) = ∂E(t)

Continuity of the surface elevation and of the surface pressure

ζ(t, ·) = ζi(t, ·) and P(t, ·) = P i(t, ·) on Γ(t)

Fluid/Solid coupling

Newton’s equations:mU̇G = −mgez +
∫
I (t)(Pi − Patm)Nw,

d

dt
(Iω) =

∫
I (t)(Pi − Patm)rG × Nw.
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Summary of the general approach

1 Euler equations with
I Free surface, constrained pressure in the exterior domain
I Constrained surface, free pressure in the interior domain

2 Coupling conditions at the contact line

3 Fluid/solid coupling via Newton’s equations

Remark

The same approach can be used with (simpler) asymptotic models:

1 1D shallow water models
 Free boundary problem for the contact line

2 1D shallow water models and vertical walls
 Coupling conditions at the contact line

3 1D Boussinesq models
 Dispersive boundary layer
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The one dimensional shallow water equations

In the exterior domain{
∂tH + ∂xQ = 0,

∂tQ + ∂x( 1
HQ

2 + 1
2gH

2) = 1
ρH∂xPatm= 0

In the interior domain I = (x−(t), x+(t)){
∂xQi = −∂tHi,

∂tQi + ∂x( 1
Hi
Q2

i + 1
2gH

2
i ) = −1

ρHi∂xP i.

Coupling conditions at x = x±(t)

H(t, ·) = Hi(t, ·), Q(t, ·) = Qi(t, ·), and Patm(t, ·) = P i(t, ·).

Coupling with the solid equations: the case of a fixed solid

∂tHi = 0  Qi(t, x) = qi(t)
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Reduction of the problem
• Interior equations{

Q(t, x) = qi,

∂tQ + ∂x( 1
HQ

2 + 1
2gH

2) = −1
ρH∂xP i

with P i(t, x±(t)) = Patm

 Solvability condition for P i (
∫ x+

x−
∂xP i = 0 )

∂tqi = F (qi, x+(t), x−(t))

• The problem is reduced to{
∂tH + ∂xQ = 0,

∂tQ + ∂x( 1
HQ

2 + 1
2gH

2) = 0
in E (t)

{
Q(t, x±(t))= qi(t),

∂tqi = F (qi, x−, x+).
(boundary condition)

H(t, x±(t)) = Hi(t, x±(t)) (free boundary equation)
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1D shallow water equations and vertical walls

Fixed object with vertical
sidewalls at x± = ±R

Equations in the exterior and interior domains

Unchanged: standard NSW equations (with pressure source term in I)

Coupling conditions at x = ±R
H(t, ·) = Hi(t, ·)///////////////////, Q(t, ·) = Qi(t, ·), and Patm(t, ·) = P i(t, ·)///////////////////////.

Coupling with the solid equations: the case of a fixed solid

Unchanged
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Non Vertical vs Vertical wals

Non vertical walls

Continuity of Q  Boundary condition for the exterior equations

Continuity of H  Evolution equation for x±

Continuity of P  Evolution equation for qi

Vertical walls

Continuity of Q  Boundary condition for the exterior equations

Continuity of H//////////////////  x± = ±R are fixed!

Continuity of P//////////////////  Evolution equation for qi ????
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{
∂tζ + ∂xQ = 0,

∂tQ + ∂x( 1
HQ

2 + 1
2gH

2) = −1
ρH∂xP

with P = Patm in E and P = Pi in I.

Local conservation of energy

∂te + ∂xF = 0

with
e =

1

2

(
gζ2 +

1

H
Q2
)

and F = Q
(
ζ +

1

2

Q2

h2

)
Total Energy

Etot =

∫
E
e +

1

2

∫
I

(
gζ2

w +
q2
i

hw

)
Conservation of total energy

0 = JFK + αqiq̇i

Evolution equation for qi

αq̇i = −Jζ +
1

2

q2
i

h2
w

K.

David Lannes, U. Bordeaux et CNRS Wave-Structure interaction in shallow water HYWEC 2 11 / 15



{
∂tζ + ∂xQ = 0,

∂tQ + ∂x( 1
HQ

2 + 1
2gH

2) = −1
ρH∂xP

with P = Patm in E and P = Pi in I.

Local conservation of energy

∂te + ∂xF = 0

with
e =

1

2

(
gζ2 +

1

H
Q2
)

and F = Q
(
ζ +

1

2

Q2

h2

)

Total Energy

Etot =

∫
E
e +

1

2

∫
I

(
gζ2

w +
q2
i

hw

)
Conservation of total energy

0 = JFK + αqiq̇i

Evolution equation for qi

αq̇i = −Jζ +
1

2

q2
i

h2
w

K.

David Lannes, U. Bordeaux et CNRS Wave-Structure interaction in shallow water HYWEC 2 11 / 15



{
∂tζ + ∂xQ = 0,

∂tQ + ∂x( 1
HQ

2 + 1
2gH

2) = −1
ρH∂xP

with P = Patm in E and P = Pi in I.

Local conservation of energy

∂te + ∂xF = 0

with
e =

1

2

(
gζ2 +

1

H
Q2
)

and F = Q
(
ζ +

1

2

Q2

h2

)
Total Energy

Etot =

∫
E
e +

1

2

∫
I

(
gζ2

w +
q2
i

hw

)

Conservation of total energy

0 = JFK + αqiq̇i

Evolution equation for qi

αq̇i = −Jζ +
1

2

q2
i

h2
w

K.

David Lannes, U. Bordeaux et CNRS Wave-Structure interaction in shallow water HYWEC 2 11 / 15



{
∂tζ + ∂xQ = 0,

∂tQ + ∂x( 1
HQ

2 + 1
2gH

2) = −1
ρH∂xP

with P = Patm in E and P = Pi in I.

Local conservation of energy

∂te + ∂xF = 0

with
e =

1

2

(
gζ2 +

1

H
Q2
)

and F = Q
(
ζ +

1

2

Q2

h2

)
Total Energy

Etot =

∫
E
e +

1

2

∫
I

(
gζ2

w +
q2
i

hw

)
Conservation of total energy

0 = JFK + αqiq̇i

Evolution equation for qi

αq̇i = −Jζ +
1

2

q2
i

h2
w

K.

David Lannes, U. Bordeaux et CNRS Wave-Structure interaction in shallow water HYWEC 2 11 / 15



Including dispersive effects using a Boussinesq model

Fixed object with vertical
sidewalls at x± = ±R

{
∂tζ + ∂xq = 0,

(1− δ2∂2
x )∂tq + ε∂x( 1

h0
q2) + h∂xζ = −h∂xP

with {
P = Patm on E = (−∞,−R) ∪ (R,∞),

ζ = ζw(x) on I = (−R,R),

and one coupling condition

q(t,±R) = qi(t).

and, with an energy conservation argument,

−αq̇i = Jζ + ε
1

2
ζ2 − δ2∂x∂tqK
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A transmission problem
∂tζ + ∂xq = 0,

(1− δ2∂2
x )∂tq + ε∂x(

1

h0
q2) + h∂xζ︸ ︷︷ ︸
:=Γ

= 0 if |x | > R

with transmission conditions

1 JqK = 0
2 −δ2∂tJ∂xqK + Jζ + ε1

2ζ
2K = −αq̇i with qi(t) = q(t,±R).

Denote R0 the inverse of (1− δ2∂2
x ) with Dirichlet BC at x = ±R,

∂tq = −R0Γ + q̇i exp(−1

δ
|x |R)

∂t∂xq(±R) = −∂xR0Γ∓ 1
δ q̇

i

∂tJ∂xqK = −J∂xR0ΓK− 2
δ q̇

i

Use second transmission condition

q̇i =
1

α + 2δ

(
δ2J−∂xR0ΓK− Jζ + ε

1

2
ζ2K
)
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with transmission conditions
1 JqK = 0
2 −δ2∂tJ∂xqK + Jζ + ε1

2ζ
2K = −αq̇i with qi(t) = q(t,±R).

Denote R0 the inverse of (1− δ2∂2
x ) with Dirichlet BC at x = ±R,

∂tq = −R0Γ + q̇i exp(−1

δ
|x |R)

∂t∂xq(±R) = −∂xR0Γ∓ 1
δ q̇

i

∂tJ∂xqK = −J∂xR0ΓK− 2
δ q̇

i

Use second transmission condition

q̇i =
1

α + 2δ

(
δ2J−∂xR0ΓK− Jζ + ε

1

2
ζ2K
)
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An ODE!{
∂tζ + ∂xq = 0,

∂tq + R0∂x
(
εq

2

h + 1
2ε(h2 − 1)

)
= q̇i exp(− |x |Rδ )

with

q̇i =
1

α + 2δ

(
δ2J−∂xR0ΓK− Jζ + ε

1

2
ζ2K
)

Remark

Can be put in conservative form

R0∂x = ∂xR1

where R1 is the inverse of (1− δ2∂2
x ) with Neumann BC.

Remark

Same approach works for generating boundary conditions: solve the
Boussinesq equations on (0,∞) given an initial data and ζ(t, x = 0).
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